期刊文献+

一类p-Laplacian-Rayleigh方程周期正解的存在性 被引量:2

Existence of positive periodic solution for a kind of p-Laplacian-Rayleigh equations
下载PDF
导出
摘要 用重合度定理讨论一类具奇性的p-Laplacian-Rayleigh方程(|x'|p-2x')'+f(x')+g(t,x)=0周期正解的存在性问题,其中p>1,f:R→R为任意连续函数,g(t,x):R×(0,+∞)→R连续,且在x=0处具有奇性。假设f小于指数增长,证明此类p-Laplacian-Rayleigh方程至少存在一个周期正解,给出周期正解存在的充分条件。应用文中定理,证明两类方程存在周期正解。 Coincidence degree theorem is used to study the existence of positive periodic solutions of the p-Laplacian-Rayleigh equations of the form( | x' |p- 2x') ' + f( x') + g( t,x) = 0with p 1,f: R→R is an arbitrary continuous function,g( t,x) : R ×( 0,+ ∞) →R is continuous and singular at x = 0. A sufficient condition is given in the case that f is less than exponential growth such that the class of p-Laplacian-Rayleigh equations has at least one positive periodic solution. At last,two examples are offered to show the applicability of the conclusion.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2015年第5期630-634,共5页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11271197) 南京信息工程大学预研基金资助项目(2014X021)
关键词 p-Laplacian-Rayleigh方程 周期解 存在性 重合度 p-Laplacian-Rayleigh equations existence periodic solution coincidence degree
  • 相关文献

参考文献10

  • 1GAINES R E, MAWHIN J L. Coincidence degree and nonlinear differential equations[ M]. Berlin : Springer-Verlag, 1977 : 568.
  • 2ZHANG M R. Periodic solutions of Li6nard equations with singular forces of repulsive type[ J ]. Journal of Mathematical Analysis and Applications, 1996, 203 ( 1 ) : 254 - 269.
  • 3WANG Z H. Periodic solutions of Li6nard equation with a singularity and a deviating argument [ J ]. Nonlinear Analysis: Real World Applications, 2014, 16:227 -234.
  • 4WANG Z H. On the existence of periodic solutions of Rayleigh equations[ J]. Zeitschrift fur angcwandte Mathematik und Physik ZAMP, 2005,56 (4) : 592 -608.
  • 5WANG G Q, C HENG S S. A priori bounds for periodic solutions of a delay Rayleigh equation [ J ]. Applied Mathematics Letters, 1999, 12 (3) : 41 -44.
  • 6LU S P, GE W G, ZHENG Z. Periodic solutions for a kind of Rayleigh equation with a deviating argument [ J ]. Applied Mathematics Letters, 2004, 17(4) : 443 -449.
  • 7EBELEAN P, MAWHIN J L. Periodic solutions of singular nonlinear perturbations of the ordinary p-Laplacian [ J ]. Advanced Nonlinear Studies, 2002, 2(3) : 299 -312.
  • 8LAZER A, SOLIMINI S. On periodic solutions of nonlinear differential equations with singularities [ J ]. Proceedings of the American Mathematical Society, 1987, 99(1) : 109 -114.
  • 9MAWHIN J. Periodic solutions of systems with p-Laplacian-like operators[ M ]. Boston: Birkhauser, 2001 : 37 -63.
  • 10MANASEVICH R, MAWHIN J L. Periodic solutions for nonlinear systems with p-Laplaeian-like operators[ J]. Journal of Differential Equations, 1998, 145(2) : 367 -393.

同被引文献6

  • 1丁同仁.关于周期性Brillouin电子束聚焦系统的一个边值问题[J].北京大学学报:自然科学版,1965,11(1):31-38.
  • 2叶彦谦,王现在.电子注聚焦理论中所出现的非线性微分方程[J].应用数学学报,1978,1:13-41.
  • 3Zhang M. Periodic solutions of Li6nard equations with singular forces of repulsive type [J]. J. Math. Anal. Appl. ,1996, 203: 254-269.
  • 4Man.ascvich R, Mawhin J. Periodic Solutions for Nonlinear Systems withp-Laplacian-Like Operators[J]. Journal of Differential Equations, 1998, 145(2): 367-393.
  • 5钟涛,鲁世平.一类具有奇性Rayleigh方程周期正解的存在性[J].扬州大学学报(自然科学版),2015,18(2):18-21. 被引量:3
  • 6陈仕洲.一类奇性的p-Laplacian-Rayleigh方程的周期正解的存在性[J].井冈山大学学报(自然科学版),2016,37(4):6-8. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部