期刊文献+

1015nm半导体激光放大系统的实验研究 被引量:1

Design and Characteristics of Diode Laser Amplifier System at 1015 nm
原文传递
导出
摘要 报道了波长为1015 nm的大功率单频半导体光放大器的设计与研制,实验研究了不同注入光功率和不同温度下,放大器输出光功率与注入电流的依赖关系。结果表明:当波长为1015 nm、功率约为30 m W的种子光注入到半导体激光放大系统中,并把该放大器的注入电流增加到5 A时,其输出的激光功率高达1600 m W,相应的放大倍数可达17.3 d B,且放大器输出功率随温度的降低而增大。此外,还观测了半导体光放大器输出功率的稳定性,发现该放大器可长时间保持稳定工作。因此,该1015 nm激光放大系统可用于掺杂稀土离子晶体的激光冷却,四倍频后还可用于汞原子光钟的实验研究。 The large output power semiconductor optical amplifier with single frequency developed. Output optical power of the amplifier relationship with injection of current is experimentally investigated at different seed laser powers and temperatures. The results of experiments show that the out power with injecting current of 5 A can be up to 1600 mW after injecting the seed laser with power of 30 mW at 1015 nm and the amplification factor is up to 17.3 dB. Moreover, the output power of the amplifier becomes larger as temperature decreases. The output power of semiconductor optical amplifier diode system is very stable once the system reaches thermal equilibrium. Therefore, it can be applied to laser cooling crystals doped with rare earth ions, as well as the optical lattice clock of mercury atoms after frequency quadrupling.
出处 《激光与光电子学进展》 CSCD 北大核心 2015年第11期158-162,共5页 Laser & Optoelectronics Progress
基金 国家自然科学基金(10974055) 国家973计划(2006CB921604 2011CB921602) 上海市自然科学基金(14ZR1412000)
关键词 激光光学 锥形放大器 光功率放大 半导体激光器 laser optics tapered amplifier optical power amplification semiconductor lasers
  • 相关文献

参考文献5

二级参考文献52

  • 1白迎新,王之江.自锁模激光器[J].物理,1994,23(3):147-152. 被引量:1
  • 2KRISTAN CORWIN L, LU Zheng-tian, CARTER HAND F, et al. Frequency-stabilized Diode Laser with the Zeeman Shift in an Atomic Vapor [J]. Applied Optics, 1998, 37: 3295-3298.
  • 3NYMAN R A, VAROQUAUX G, VILLIER B, et al. Tapered-amplified AR-coated Laser Diodes for Potassium and Rubidium Atomic-physics Experiments [ Z ]. Condensed matter/0511737, 2005.
  • 4SHVRACHUCK I, DIECKMANN K, ZIELONKOWSKI M, et al. Broad-area Diode-laser System for a Rubidium Bose- Einstein Condensation Experiment [ J]. Appl Phys B, 2000, 71 : 475- 480.
  • 5E Yablonovitch. Photonic band-gap structures[J]. J Opt Soc Am B, 1993, 10(2): 283-295.
  • 6K M Ho, C T Chan, C M Soukoulis. Existence of a photonic gap in periodic dielectric structures[J]. Phys Rev Lett, 1990, 65 (25) : 3152-3155.
  • 7W M Robertson, G Arjavalingam. Measurement of photonic band structure in a two-dimensional periodic dielectric array[J]. Phys Rev Lett, 1992, 68(13) : 2023-2026.
  • 8E M Pessina, G Bonfrate, F Fontana, et al: Experimetal observation of the Risken-Nummedal Graham Haken multimode laser instability [J]. Physical Review A, 1997, 56 (5): 4086-4093.
  • 9V J Matsas, D J Richardson, T P Newson. Characterization of a self-starting, passively mode-locked fiber ring laser that exploits nonlinear polarization evolution [ J]. Opt Lett, 1993, 18 ( 5 ) : 358-360.
  • 10A A Moiseev, G V Gelikonov, E A Mashcovitch. Tilted short base Fabry-Perot interferometer with inverted resonances in feedback system of widely tunable linear laser[J]. Laser Phys Lett, 2010, 7(7): ,505-509.

共引文献19

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部