期刊文献+

复合窃听信道的安全容量 被引量:2

Security Capacity of Compound Wiretap Channel
原文传递
导出
摘要 在Wyner窃听信道和复合信道的基础上,考虑了合法传输信道集为经典信道,窃听信道集为量子信道这种信道模型的信息传输能力。目标是要设计编码译码方案,使得接收方能够完美译出发送的消息(译码错误概率趋于0),同时窃听者对发送消息的疑惑度尽可能的高。在此基础上推导了在发送者知道信道状态信息的情况下有量子窃听时的经典复合信道的安全容量;同时得出了在发送者不知道信道状态信息的情况下这种信道的安全容量的下界。 Based on Wyner tapping channel and the composite channel, the information transmission ability of a channel is considered in which legitimate transmission channel set is a classical channel and wiretap channel set is a quantum channel. The goal is to design coding and decoding scheme, so that the receiver can decode the message sent by the sender perfectly (decoding error probability close to zero), while the degree of confusion of eavesdropper to messages is as high as possible. On this basis, it is guaranteed that in the case of Alice' s knowing of information of channel condition, there is the security capacity of classic composite channel when quantum wiretaps; at the same time, the lower bound of security capacity of this channel is known in the case of Alice's unknowing of information t of channel condition.
出处 《激光与光电子学进展》 CSCD 北大核心 2015年第11期240-247,共8页 Laser & Optoelectronics Progress
基金 山西省基础研究项目(2014011007-2) 山西省回国留学人员科研资助项目(2014-012) 山西省国际科技合作项目(2014081027-1)
关键词 量子光学 复合信道 窃听信道 量子信道 安全容量 quantum optics compound channel wiretap channel quantum channel security capacity
  • 相关文献

参考文献3

二级参考文献52

  • 1白增亮,王旭阳,杜鹏燕,李永民.连续变量量子密钥分发的数据逆向协调[J].量子光学学报,2012(1):23-26. 被引量:6
  • 2N Namekata, H Takesue, T Honjo, et al. High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes [J]. Opt Express, 2011, 19(11): 10632-10639.
  • 3J Lodewyck, M Bloch, R Garcia-Patron, et al. Quantum key distribution over 25 km with an all-fiber continuous-variable system[J]. PhysRevA, 2007, 76(4): 042305.
  • 4K Kasai, R Matsumoto, K Sakaniwa. Information reconciliation for QKD with rate compatible non-binary LDPC codes [C]. International Symposium on Information Theory and Its Applications (ISITA), 2010. 922-927.
  • 5I B Djordjevic, B Vasie. Nonbinary LDPC codes for optical communication systems [J]. IEEE Photon Technol Lett, 2005, 17(10) : 2224-2226.
  • 6A Leverrier, P Grangier. Unconditional security proof of long- distance continuous-variable quantum key distribution with discrete modulation[J]. Phys Rev Lett, 2009, 102 (18): 180504.
  • 7Leverrier Anthony, Grangier Philippe. Continuous-variable quantum key-distribution protocols with a non-Gaussian modulation [J]. Phys Rev A, 2011, 83(4) : 042312.
  • 8P Jouguet, S Kunz-Jacques, A Leverrier. Long-distance continuous-variable quantum key distribution with a Gaussian modulation[J]. PhysRevA, 2011, 84(6): 062317.
  • 9P Jouguet, S Kunz-Jacques, A Leverr]er, et al. Experimental demonstration of long-distance continuous-variable quantum key distribution [J]. Nature Photonics, 2013, 7(5), 378-381.
  • 10Nanrun Zhou, Lijun Wang, Lihua Gong, et al. Quantum deterministic key distribution protocols based on teleportation and entanglement swapping [J]. Opt Commun, 2011, 284 (19) : 4836 -4842.

共引文献42

同被引文献17

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部