期刊文献+

人工核酸酶介导的基因组编辑技术 被引量:2

Genome Editing Technologies Based on Engineered Nuclease
下载PDF
导出
摘要 传统的基因组编辑技术是基于胚胎干细胞和同源重组实现生物基因组定向改造,但是该技术打靶效率低,严重制约了生命科学以及医学的研究.因此,研究新的基因组编辑技术十分重要.人工核酸酶介导的基因组编辑技术是通过特异性识别靶位点造成DNA双链断裂,引起细胞内源性的修复机制实现靶基因的修饰.与传统的基因组编辑技术相比,人工核酸酶技术打靶效率高,这对于基因功能的研究、构建人类疾病动物模型以及探索新型疾病治疗方案有着重要的意义.人工核酸酶技术有3种类型:锌指核酸酶(ZFN)、类转录激活因子核酸酶(TALEN)及规律成簇的间隔短回文重复序列(CRISPR).本文将对以上3种人工核酸酶技术的原理以及在生命科学和医学研究的应用进行综述. Traditional genome editing technologies can be used to modify biological genome by the embryonic stem cells and homologous recombination. However,this technology has low efficiency of gene targeting,which restricted the life sciences and medical research. Therefore,the research of new genome editing technology is very important. Engineered nuclease mediated genome editing technologies create DNA double-strand breaks by specific recognition of target sites,causing intracellular endogenous repair mechanisms to complete the modification of target gene. Compared with traditional genome editing technologies,the engineered nuclease technologies have high efficiency of gene targeting,which has an important significance in the study of gene function,structure of animal models of human disease,and exploration of new disease treatment program. There are three types of the engineered nuclease technologies: ZFN( zinc finger nucleases),TALEN( transcription activator-like effector nucleases) and CRISPR( clustered regularly interspaced short palindromic repeats). In this article,we reviewed the application of the engineered nuclease technologies in life sciences and medical research.
出处 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2015年第11期1132-1137,共6页 Chinese Journal of Biochemistry and Molecular Biology
基金 国家自然科学基金(No.U1302227) 国家高技术研究发展计划(863计划 No.2012AA020701)~~
关键词 基因组编辑 锌指核酸酶 类转录激活因子核酸酶 规律成簇的间隔短回文重复序列 genome editing zinc finger nucleases(ZFN) transcription activator-like effector nucleases(TALEN) clustered regularly interspaced short palindromic repeats(CRISPR)
  • 相关文献

参考文献4

二级参考文献44

  • 1白光兴,孙志伟,黄莺,俞炜源.利用Red重组系统对大肠杆菌ClpP基因的敲除[J].中国生物化学与分子生物学报,2005,21(1):35-38. 被引量:29
  • 2Boch J,Bonas U.Xanthomonas AvrBs3 family-type III effectors:discovery and function[J].Annu Rev Phytopathol,2010,48:419-436.
  • 3Boch J,Scholze H,Schornack S,et al.Breaking the code ofDNA binding specificity of TAL-type III effectors[J].Science,2009,326(5959):1509-1512.
  • 4Morbitzer R,Romer P,Boch J,et al.Regulation of selectedgenome loci using de novo-engineered transcription activator-likeeffector(TALE)-type transcription factors[J].Proc Natl AcadSci U S A,2010,107(50):21617-21622.
  • 5Moscou M J,Bogdanove A J.A simple cipher governs DNArecognition by TAL effectors[J].Science,2009,326(5959):1501.
  • 6Li T,Huang S,Jiang W Z,et al.TAL nucleases(TALNs):hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain[J].Nucleic Acids Res,2011,39(1):359-372.
  • 7Mussolino C,Morbitzer R,Lutge F,et al.A novel TALEnuclease scaffold enables high genome editing activity incombination with low toxicity[J].Nucleic Acids Res,2011,39(21):9283-9293.
  • 8Clark K J,Voytas D F,Ekker S C.A TALE of two nucleases:gene targeting for the masses?[J]Zebrafish,2011,8(3):147-149.
  • 9Mahfouz M M,Li L.TALE nucleases and next generation GMcrops[J].GM Crops,2011,2(2):99-103.
  • 10Bogdanove A J,Voytas D F.TAL effectors:customizable proteinsfor DNA targeting[J].Science,2011,333(6051):1843-1846.

共引文献73

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部