期刊文献+

气固界面能量传输机理实验研究

Experimental Investigation on Energy Transport Across the Solid-Gas Interface
原文传递
导出
摘要 为了探讨气-固界面能量传输物理机制,采用实验方法研究了不同压力下氩气-玻璃,水蒸气-玻璃界面附近温度分布和界面吸附特征。结果表明,在两种界面上都存在明显的温度跳跃现象。随着压力的增加,界面温度跳跃值先急剧减小,然后趋于平缓。基于界面吸附特征,分析了两种界面上的能量传输机理。在氩气-玻璃界面,氩气以单原子形式被吸附在界面上,形成阻碍能量传输的附加热阻,因此,压力越高,吸附量越多,界面能量传输能力越弱。对于水蒸气-玻璃界面,水蒸气分子以团簇的形式被吸附在界面上,压力增加,吸附量增多,团簇振动频率类型增加,激发出更多类型的声子在界面传递,从而增强界面的能量传输。 The characteristics of the energy transport and adsorption at the silica-Argon gas and silica-water vapor interfaces are experimentally investigated at different pressures.It is found that the temperatures at the solid-gas interfaces are discontinuous.As the pressure increases,the magnitude of the temperature discontinuity decreases dramatically in the low pressure range,after which it does not change appreciably.Based on the adsorption behaviors at the solid-gas interfaces,the mechanisms of the interfacial energy transport are analyzed.For argon adsorbing on silica,the adsorbate consists of adsorbed atoms and acts as resistance to the heat flux.For water vapor adsorbing on silica,the adsorbate consists of clusters with different number of molecules,enhancing the types of phonons that can be transferred and the heat flux.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2015年第11期2477-2480,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51406019) 中国博士后科学基金资助项目(No.2014M562280)
关键词 气-固界面 温度跳跃 吸附特性 能量传输 solid-gas interface temperature discontinuity adsorption energy transport
  • 相关文献

参考文献10

  • 1Sharipov F. Data on the Velocity Slip and Temperature Jump on a Gas-Solid Interface [J]. Journal of Physical and Chemical Reference Data, 2011, 40(2): 023101.
  • 2Maxwell J C. On Stresses in Rarified Gases Arising From Inequalities of Temperature [J]. Philosophical Transac- tions of the Royal Society, 1879, 170:231-256.
  • 3Barichello L B, Siewert C E. The Temperature-Jump Problem in Rarefied-Gas Dynamics [J]. European Jour- nal of Applied Mathematics, 2000, 11:353 364.
  • 4Barichello L B, Bartz A C R, Camargo M, et al. The Temperature-Jump Problem for a Variable Collision Fre- quency Model [J]. Physics of Fluids, 2002, 14:382 391.
  • 5Sharipov F, Kalempa D. Velocity Slip and Temperature Jump Coefficients for Gaseous Mixtures. II. Thermal Slip Coefficient [J]. Physics of Fluids, 2004, 16(3): 759 764.
  • 6Shariopv F, Cumin L M G, Kahnpa D. Heat Flux Through a Binary Gaseous Mixture Over the Whole Range of the Knudsen Number [J]. Physica A, 2007, 378:183 193.
  • 7Elliott J A W, Ward C A. Chemical Potential of Ad- sorbed Molecules From Quantum Statistical Formulation [J]. Langmuir, 1997, 13:951 960.
  • 8Van den Bergh J, Zhu W, Gascon J, et al. Seperation and Permeation Characteristics of a DD3R Zeolite Membrane [J]. Journal of Membrance Science, 2008, 316(1/2): 35 45.
  • 9Ward C A, Wu J. Effect of Adsorption on the Surface Tensions of Solid-Fluid Interfaces [J]. Journal of Physical Chemistry B, 2007, iii: 3685-3694.
  • 10Wu C M, Zandavi H, Ward C A. Prediction of the Wetting Condition Using Zeta Isotherm [J]. Physical Chemistry Chemical Physics, 2014, 16:25564 25572.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部