期刊文献+

动态增量式子主题事件演化分析 被引量:4

Dynamic Incremental Analysis of Sub-Topic Evolution
下载PDF
导出
摘要 事件发展的持续性和相互影响性使人们对事件的后续进展越来越感兴趣,而传统的事件分析大多是针对基于句子的事件.针对专题事件,结合single-pass聚类方法、兼类思想以及动态增量思想,提出了一种增量式子主题动态演化分析模型.该模型基于专题事件的时序特征提出,包括动态阈值的设定、相似度平滑、子主题动态增量策略等过程,以及运用χ2统计的思想来综合评价模型性能的方法.该模型可以有效地对专题事件进行子主题分析,进而使人们能够更直接和快速地了解主题事件的进展.实验结果表明提出的方法使子主题演化分析的性能有了显著的提高. There has been increasing interest in the follow-up progress of events because of sustainability and mutual influence of events.Meanwhile,more and more emergent events make it necessary to follow events in an intuitive and efficient way.However,the majority of traditional event analysis is sentence-oriented or topic-oriented which is event extraction or topic detection and tracking.A hierarchical structure of the topic event is constructed according to the research objects and the scope.A dynamic incremental model is presented for analyzing sub-topic dynamics in the topic event,which borrows the ideas of single-pass clustering,multi-category and dynamic incremental model.It is document-oriented and built on temporal property of the topic event,including dynamic threshold selection,similarity smoothing and dynamic incremental strategy. Meanwhile,overall evaluation criteria combinied withχ2-test is served for performance analysis.The algorithm is effective and facilitates users to follow the topic event explicitly.Experimental results reported for four wellknown topic events in China show that the performance of sub-topic evolution analysis is improved significantly.
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第11期2441-2450,共10页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61402134) 国家国际科技合作专项(2014DFA11350)
关键词 演化分析 子主题 动态 增量式 主题事件 evolution analysis sub-topic dynamic incremental topic event
  • 相关文献

参考文献19

  • 1Boschee E, Natarajan P, Weischedel R. Automatic extraction of events from open source text for predictive forecasting [G] //Handbook of Computational Approaches to Counterterrorism. Berlin: Springer, 2013:51-67.
  • 2Atkinson M, Du M, Piskorski J, et al. Techniques for multilingual security-related event extraction from online news [G/ //Computational Linguistics. Berlin: Springer, 2013:163-186.
  • 3Wang Wei, Zhao Dongyan. Ontology-based event modeling for semantic understanding of Chinese news story [G] /] Natural Language Processing and Chinese ComPuting. Berlin: Springer, 2012:58-68.
  • 4Linguistic Data Consortium. ACE ( Automatic Content Extraction ) Chinese annotation guidelines {or events, Version 5.5.1 IS/. Philadelphia, PA: Linguistic Data Consortium, 2005.
  • 5Allan J. Topic Detection and Tracking: Event-Based Information Organization [M]. Berlin: Springer, 2002.
  • 6Chen Yah, Amiri H, Li Zhoujun, et al. Emerging topic detection for organizations from microblogs [C] //Proc of the 36th Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2013:43-52.
  • 7Yin Hongzhi, Cui Bin, Lu Hua, et al. A unified model for stable and temporal topic detection {tom social media data [C] //Proe of the 29th IEEE Int Conf on Data Engineering (ICDE). Piscataway, NJ= IEEE, 2013= 661-672.
  • 8Becker H, Naaman M, Gravano L. Beyond trending topics= Real-world event identification on Twitter [C] //Proe of the 5th Int AAAI Conf on Weblogs and Social Media. Menlo Park, CA: AAAI, 2011:38-441.
  • 9Takahashi T, Tomioka R, Yamanishi K. Discovering emerging topics in social streams via link-anomaly detection [J]. IEEE Trans on Knowledge and Data Engineering, 2014, 26(1): 120-180.
  • 10张阔,李涓子,吴刚,王克宏.基于关键词元的话题内事件检测[J].计算机研究与发展,2009,46(2):245-252. 被引量:15

二级参考文献16

  • 1贾自艳,何清,张海俊,李嘉佑,史忠植.一种基于动态进化模型的事件探测和追踪算法[J].计算机研究与发展,2004,41(7):1273-1280. 被引量:58
  • 2吴平博,陈群秀,马亮.基于时空分析的线索性事件的抽取与集成系统研究[J].中文信息学报,2006,20(1):21-28. 被引量:21
  • 3雷震,吴玲达,雷蕾,黄炎焱.初始化类中心的增量K均值法及其在新闻事件探测中的应用[J].情报学报,2006,25(3):289-295. 被引量:25
  • 4NIST. Topic Detection and Tracking Evaluation [OL]. [2007-11-05]. http://www.nist. gov/speech/tests/tdt/index. htm
  • 5Topic Detection and Tracking. Event-Based Information Organization [M]. Amsterdam, Netherlands: Kluwer Academic, 2002
  • 6Yang Y, Carbonell J, Brown R, et al. Learning approaches for detecting and tracking news events [J]. IEEE Intelligent Systems Special Issue on Applications of Intelligent Information Retrieval, 1999, 14(4) : 32-43
  • 7Nallapati R, Ao Feng, Fuchun Peng, et al. Event threading within news topics [C] //Proe of the 13th ACM Conf on Information and Knowledge Management (CIKM). New York: ACM, 2004:446-453
  • 8Allan J, Carbonell J, Doddington G, et al. Topic detection and tracking pilot study: Final report [C] //Proc of DARPA Broadcast News Trans and Understanding Workshop. San Francisco: Morgan Kaufmann,1998:194-218
  • 9Yang Y, Pierce T, Carbonell J. A study on retrospective and on-line event detection [C] //Proc of the 21st Ann Int ACM SIGIR Conf on Research and Development in Information Retrieval ( SIGIR'98 ). Melbourne: Association for Computing Machinery Press, 1998:28-36
  • 10Juha M, Helena A M, Marko S. Simple semantics in topic deteetion and tracking [J]. Information Retrieval, 2004, 7 (3-4): 347-368

共引文献14

同被引文献32

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部