期刊文献+

异辛烷预混层流火焰结构的数值研究

Numerical Study on Premixed Laminar Flame Structure for Iso-Octane
下载PDF
导出
摘要 为解决化石燃料燃烧带来的问题,需要对燃料的基础燃烧特性进行深入研究。为此通过数值计算研究了初始压强50~101k Pa,初始温度298~353K,当量比0.6~1.5异辛烷的预混层流火焰结构特性,分析了初始压强、初始温度、当量比对火焰厚度、反应区厚度、厚度比的影响。数值计算结果表明:火焰厚度、反应区厚度、厚度比会随着初始压强和初始温度的升高而减小,随当量比的增加先减小后增大;火焰厚度、反应区厚度、厚度比分别在当量比1.1,0.9,1.3时获得最小值;层流燃烧速度与H+OH的最大浓度有密切关系,都随初始温度的增加而增加,随初始压强的增加而减小。通过敏感性分析,发现H主要通过R3,R24,R97,R162,R163,R179生成,通过R1,R12,R14消耗;OH主要通过R1与R14生成,通过R3,R12,R16,R29,R95,R97消耗。 In order to solve the problem caused by the burning of fossil fuel,the fundamental mechanism of fuel combustion should be deeply studied. Structure characteristics of premixed laminar flame for iso-octane are studied via numerical caculation over the initial pressure range of 50~101k Pa,initial temperature range of298~353K and equivalence ratio from 0.6 to 1.5. The effects of initial pressure,temperature and equivalence ratio on flame thickness,reaction zone thickness and thickness ratio were analyzed. The calculation results show that the flame thickness,the reaction zone thickness and thickness ratio decrease with the increase of initial pressure and initial temperature. With increase of equivalence ratio,the flame thickness,the reaction zone thickness and thickness ratio increase to maximum and then decrease. The minimum of flame thickness,reaction zone thickness and thickness ratio are obtained at equivalence ratio 1.1,0.9 and 1.3. The laminar burning velocity has close relationship with the largest concentrations of H+OH,both laminar burning velocity and the largest concentrations of H+OH increase with increasing of initial temperature and decrease with increasing of initial pressure.Based on sensitivity analysis,H is mainly generated by R3,R24,R97,R162,R163,R179 and consumed by R1,R12,R14,while OH is mainly generated by R1,R14 and consumed by R3,R12,R16,R29,R95,R97.
出处 《推进技术》 EI CAS CSCD 北大核心 2015年第10期1516-1521,共6页 Journal of Propulsion Technology
基金 国家自然科学基金(11372356)
关键词 异辛烷 火焰结构 火焰厚度 反应区厚度 Iso-octane Flame structure Flame thickness Reaction zone thickness
  • 相关文献

参考文献19

  • 1Leo Courty, Khaled Chetehouna, Zheng Chen, et al. Determination of Laminar Burning Speeds and Mark- stein Lengths of p-Cymene/Air Mixtures Using Three Models [J]. Combustion Science and Technology, 2014, 186: 490-503.
  • 2李勇,沈怀荣.非平衡等离子体对甲烷点火和火焰传播影响的机理分析[J].推进技术,2013,34(11):1530-1536. 被引量:13
  • 3Xinyi Zhang, Chenglong Tang, Hubin Yu, et al. Flame-Front Instabilities of Outwardly Expanding Iso- Octane/n-Butane Blend-Air Flames at Elevated Pres- sure [J]. Energy & Fuels, 2014, 28: 2258-2266.
  • 4Xinyi Zhang, Chenglong Tang, Huibin YU, et al. Lami- nar Flame Characteristics of lso- octane/n- Butanol Blend-Air Mixtures at Elevated Temperature[J]. Ener- gy & Fuels, 2013, 27: 2327-2335.
  • 5Zhou Z, Tao Z Q, Lin B Y, et al. Numerical Investiga- tion on Effects of High Initial Temperature and Pressure on Flame Behavior of CO/HJAir Mixtures Near Dilution Limit [J]. International Journal of Hydrogen, 2013, 38: 274-281.
  • 6Law C K, Jomaas G, Bechtold J K. Cellular Instabili- ties of Expanding Hydrogen/Prop-and Spherical Flames at Elevated Pressure: Theory and Experimental[J]. Pro- ceedings of Combustion Institute, 2005, 30( 1 ) : 159-167.
  • 7Law C K, Kwon O C. Effects of Hydrocarbon Substitu- tion on Atmospheric Hydrogen-Air Flame Propagation [J]. International Joural of Hydrogen Energy, 2004, 29 (8): 867-879.
  • 8Qiao L, Kim C H, Faeth G M. Suppression Effects of Diluents on Laminar Premixed Hydrogen/Oxygen/Nitro- gen Flames [J]. Combustion and Flame, 2005, 143:79-96.
  • 9Hu E, Huang Z H, He J J, et al. Experimental and Nu- merical Study on Laminar Characteristics of Premixed Methane- Hydrogen- Air Flames [J]. International Joural of Hydrogen Energy, 2009, 34( 11): 4876-4888.
  • 10Hu E, Huang Z H, Zheng J J, et al. Numerical Study on Laminar Burning Velocity and NO Formation of Pre- mixed Methane- Hydrogen- Air Flames [ J]. Internation- al Joural of Hydrogen Energy, 2009, 34 ( 16): 6951- 6960.

二级参考文献43

  • 1兰宇丹,何立明,郭向阳.不同初始温度下等离子体对H_2/Air混合物燃烧影响[J].推进技术,2009,30(6):651-655. 被引量:10
  • 2王元光,徐旭,蔡国飙.超燃冲压发动机燃烧室设计计算方法的研究[J].北京航空航天大学学报,2005,31(1):69-73. 被引量:5
  • 3张波,傅维标.二甲醚火焰传播速度的实验研究[J].燃烧科学与技术,2005,11(2):163-166. 被引量:11
  • 4郑小梅,徐大军,蔡国飙.超燃冲压发动机性能的初步分析[J].航空学报,2007,28(B08):35-41. 被引量:4
  • 5Tishkoff J M, Drummond J P, Edwards T, et al. Future Direction of Supersonic Combustion Research:Air Force/ NASA Workshop on Supersonic Combustion [ R ]. AIAA 97-1017.
  • 6Schetz J A, Cannon S C, Baranovsky S. Ignition of Liq- uid Fuel Jets in a Supersonic Airstream [ R ]. AIAA 79- 1238.
  • 7Segal C, Owens M G, Tehranian S, et al. Flame Holding Configurations for Kerosene Combustion in a Mach 1. 8 Airflow[ R]. AIAA 97-2888.
  • 8Bryan Mceldowney, Rodney Meyer,Naveen Chintala. Ig- nition of Premixed Hydrocarbon-Air Flows Using a Non- equilibium RF Discharge[ R]. AIAA 2003-3478.
  • 9Packan D, Grisch F, Attal-Tretout. Study of Plasma-En- hanced Combustion Using Optical Diagnostics [ R ]. A1AA 2004-983.
  • 10Bocharov A N, Bityurin V A,Filimonova E A. Numerical Study of Plasma Assisted Mixing and Combustion in Non- Premixed Flows[ R]. AIAA 2004-1017.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部