期刊文献+

基于核主成分分析的图像模糊篡改检测算法 被引量:3

Blur detection algorithm in image forgery based on kernel principal component analysis
下载PDF
导出
摘要 现有的图像模糊篡改检测算法通常提取模糊操作引入的某单一特征进行判断,为更好地提高算法检测效率,提出基于核主成分分析的模糊篡改检测算法。通过奇异值分解提取第一组特征,计算图像二次模糊相关性作为第二组特征,计算图像质量因子作为第三组特征。运用核主成分分析方法实现多特征融合。采用支持向量机进行判断,从而实现模糊篡改检测。实验表明:该算法能够有效地检测数字篡改图像的模糊操作痕迹,并能对模糊篡改区域进行准确定位。 Most existing image blurring forgery detection algorithm consider only one single feature introduced by blurring operation,in order to improve algorithm detection efficiency,propose blur forgery detection algorithm based on kernel principal component analysis( KPCA). Through singular value decomposition( SVD),extract the first group of features,calculate the secondlary fuzzy correlation as the second group of features,calculate image quality factor as the third group of feature. Multi-feature fusion are achieved using KPCA. Judgement is carried out using support vector machine,so as to realize blur forgery detection. Experimental results show the proposed algorithm can effectively detect blur operation trace of digital tampering image and can accurately locate blur forgery area.
出处 《传感器与微系统》 CSCD 2015年第11期137-139,共3页 Transducer and Microsystem Technologies
基金 贵州省科学技术基金资助项目(黔科合J字(2012)2272) 教育部人文社会科学研究青年项目(13YJC870013)
关键词 图像篡改检测 核主成分分析 模糊操作 image forgery detection kernel principal component analysis(KPCA) blur operation
  • 相关文献

参考文献8

二级参考文献40

  • 1张晓冬,王桥,吴乐南.利用脊的特征进行信号盲分离[J].电子学报,2004,32(7):1156-1159. 被引量:7
  • 2LI C-T. Source camera identification using enhanced sensor pattern noise [ J ]. IEEE Transactions on Information Forensics and Security,, 2010, 5(2): 280-287.
  • 3TSAI M-J, WANG C-S. Adaptive feature selection for digital camera source identification [ C ]// ISCAS 2008: IEEE International Symposium on Circuits and Systems. Washington, DC: IEEE, 2008:412-415.
  • 4THEODORIDIS S, KOUTROUMBAS K. Pattern Recognition [ M ]. 3rd ed. London: Academic Press, 2006: 150-153.
  • 5FRIDRICH J. Digital image forensics [ J ]. IEEE Signal Processing Magazine, 2009, 26(2): 26-37.
  • 6MATSUSHITA K, KITAZAWA H. An improved camera identification method based on the texture complexity and the image restoration [ C]// ICHIT '09: Proceedings of the 2009 International Conference on Convergence and Hybrid Information Technology. New York: ACM, 2009: 171-175.
  • 7BAYRAM S, SENCAR H, MEMON N. Source camera identification based on CFA interpolation [ C]// Proceedings of IEEE International Conference on Image Processing. Washington, DC: IEEE Signal Processing Society, 2005:69-72.
  • 8KHARRAZI M, SENCAR H T, MEMON N. Blind source camera i- dentification [ C ]// Proceedings of the 2004 IEEE International Conference on Image Processing. Singapore: IEEE, 2004:709 - 712.
  • 9TSAI M J, WU G H. Using image features to identify camera sources [ C ]// Proceedings of 2006 IEEE International Conference on Acoustics, Speech and Signal Processing. Toulouse, France: IEEE, 2006:297-300.
  • 10GOU H, SWAMINATHAN A, WU M. Intrinsic sensor noise features for forensic analysis on scanners and scanned images [ J ]. IEEE Transactions on Information Forensics and Security, 2009, 4 (3): 476-491.

共引文献75

同被引文献19

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部