期刊文献+

颜色和纹理特征的运动目标检测 被引量:1

Detection for moving targets based on color and texture features
下载PDF
导出
摘要 针对复杂场景中运动目标检测这一难题,提出利用RGB颜色特征和尺度不变局部三元模式的运动目标检测算法。利用时域中值法得到估算背景图像并快速初始化背景模型。通过颜色特征、纹理特征相似性度量,融合得出背景概率网络,通过侧抑制滤波提高对比度分类出前景与背景像素,前景像素进一步进行阴影检测,将阴影点归为背景点,但不用于模型更新。将算法与GMM、SC-SOBS、SUBSENS算法在变化检测数据库中进行对比验证。实验表明,新算法在满足实时性的基础上,对动态背景,阴影和相机抖动等有一定的鲁棒性。 An algorithm utilizing RGB color features and scale invariant local ternary patterns is presented for sol- ving the difficulty of detecting moving targets in complex scenes. The time-domain median method was adopted to estimate background image and initialize background model quickly. By fusing similarity measures of color and tex- ture features, a background probability network was obtained. The application of lateral inhibition filtering improved the contrast, the foreground and background pixels were classified, and shadow detection worked for the foreground pixels. The shadow pixels were classified as background pixels but not used for the model update. The performance of the proposed algorithm was compared with the other three algorithms in the change detection database. The pro- posed method can accurately handle scenes containing moving backgrounds, shadows, and camera jitter, with ac- ceotable real-time performance.
出处 《智能系统学报》 CSCD 北大核心 2015年第5期729-735,共7页 CAAI Transactions on Intelligent Systems
关键词 运动目标检测 颜色特征 纹理特征 阴影检测 模型更新 moving target detection color feature texture feature shadow detection model update
  • 相关文献

参考文献18

  • 1WREN C R, AZARBAYEJANI A, DARRELL T, et al.Pfinder : real-time tracking of the human body [ J ] . IEEETransactions on Pattern Analysis and Machine Intelligence,1997,19(7) : 780-785.
  • 2ZIVKOVIC Z. Improved adaptive Gaussian mixture modelfor background subtraction [ C ] //Proceedings of the 17thInternational Conference on Pattern Recognition. Cam-bridge, UK, 2004: 28-31.
  • 3HERAS EVANGELIO R H,PATZOLD M, KELLER I,etal. Adaptively splitted GMM with feedback improvement forthe task of background subtraction [ J ]. IEEE Transactionson Information Forensics and Security, 2014, 9(5):863-874.
  • 4LI Xingliang, WU Yubao. Image objects detection algorithmbased on improved Gaussian mixture model [ J ]. Journal ofMultimedia, 2014,9(1) : 152-158.
  • 5HAN B, DAVIS L S. Density-based multifeature backgroundsubtraction with support vector machine [ J ] . IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 2012,34(5) : 1017-1023.
  • 6WANG Hanzi, SUTER D. Background subtraction based ona robust consensus method [ C ] //18th International Confer-ence on Pattern Recognition. Hong Kong, China, 2006:223-226.
  • 7MADDALENA L,PETROSINO A. A self-organizing ap-proach to background subtraction for visual surveillance ap-plications [J ] . IEEE Transactions on Image Processing,2008,17(7) : 1168-1177.
  • 8MADDALENA L,PETROSINO A. The SOBS algorithm:what are the limits. [ C J//2012 IEEE Computer SocietyConference on Computer Vision and Pattern RecognitionWorkshops. Providence, 2012: 21-26.
  • 9BARNICH O, VAN DROOGENBROECk M. ViBe: A uni-versal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2011,20(6): 1709-1724.
  • 10HOFMANN M, TIEFENBACHER P,RIGOLL G. Back-ground segmentation with feedback : The pixel-based adap-tive segmenter[ C]// 2012 IEEE Computer Society Confer-ence on Computer Vision and Pattern Recognition Work-shops. Providence, USA, 2012: 38-43.

同被引文献11

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部