摘要
能控性是多智能体系统研究的核心问题,主要包括结构可控性和精准可控性。对多智能体系统的模型和能控性代数条件进行了总结。在相对协议和绝对协议条件下,运用图论和矩阵论的知识系统分析了多智能体系统能控性的代数条件。按照同质多智能体到异质多智能体的顺序,对现有的多智能体系统模型和代数条件进行了梳理,并在已有结论的基础上对多智能体系统能控性的代数条件进行了改善,进一步提出了新的代数条件。多智能体能控性代数条件的改进大大简化了能控性的计算量。
Controllability is a key issue in the study of multi-agent systems, especially structural controllability and exact controllability. This paper summarizes the system model and the algebraic conditions for controllability of multi-agent systems. Based on relative and absolute protocols, the algebraic conditions are analyzed systematically for multi-agent system controllability, using graph theory and matrix theory. Going from homogeneous dynamical multi-agent systems to heterogeneous dynamical multi-agent systems, the existing models and algebraic conditions for multi-agent systems are sorted out. The algebraic conditions for controllability of multi-agent systems are im- proved, and some new algebraic conditions are proposed. The improvement of algebraic controllability conditions for multi-agent system simplifies the calculation greatly.
出处
《智能系统学报》
CSCD
北大核心
2015年第5期747-754,共8页
CAAI Transactions on Intelligent Systems
基金
国家自然科学基金资助项目(61374062)
山东省杰出青年科学基金资助项目(JQ201419)
关键词
多智能体系统
结构可控性
精准可控性
相对协议
绝对协议
代数条件
图论
矩阵论
multi-agent system
structure controllability
exact controllability
relative protocol
absolute protocol
algebraic condition
graph theory
matrix theory