摘要
研究Caputo型分数阶微分函数的正解情况,考察其正解的唯一性问题,进而研究其数值求解的误差估计,所得结果拓展了Wyss的研究成果.
The development speed of the reactional differential equation is slow due to the application nonlocality and the calculative complexity. In this paper, we will discuss the positive solution to the fractional differential equation with Ca- puto derivative based on the current research. Then we also study the uniqueness of the solution and discern the deviation comparing with numerical solution. The paper expands Wyss' research and conclusion.
出处
《华侨大学学报(自然科学版)》
CAS
北大核心
2015年第6期721-725,共5页
Journal of Huaqiao University(Natural Science)
基金
河南省2014年软科学研究计划项目(142400411076)