期刊文献+

基于EEG去趋势波动分析和极限学习机的癫痫发作自动检测与分类识别 被引量:4

Automatic Detection and Classification of Epileptic EEG Based on Detrended Fluctuation Analysis and Extreme Learning Machine
下载PDF
导出
摘要 癫痫是一种常发的中枢神经失调疾病.基于脑电(EEG)的癫痫发作自动检测与准确识别在临床诊断和治疗上具有重要意义.本文首先采用经验模态分解(EMD)将被试者脑电信号分解成多个固有模态函数(IMF),然后计算低尺度IMF的去趋势波动指数、均值和标准差并组成特征向量,再由极限学习机(ELM)进行自动分类.经使用波恩大学和波士顿儿童医院的脑电数据集(含健康志愿者与癫痫患者)检测验证,结果表明本文所提出的自动检测与快速识别方法仅需较少训练样本即可达到较高的癫痫发作准确识别率(≥95%),具有较好临床应用价值. Epilepsy is one of the most common neurological diseases.Automatic detection and accurate identification of epileptic seizure based on electroencephalogram ( EEG) plays an important role in the dia gnosis and treatment of epileptic seizures.In this paper, EEG signals were decomposed into a number of intrinsic mode functions ( IMFs) by empirical mode decomposition ( EMD) , and then the detrended fluc-tuation index, mean and standard deviation ( SD) of IMFs of lower scales were calculated.The three pa-rameters were combined into a feature vector and fed into an extreme learning machine ( ELM) classifier. The proposed method was validated on the EEG data sets from Bonn University and Boston Children's Hospital, involving healthy subjects and epileptics.Results show that the proposed method of automatic detection and rapid identification requires fewer training samples while achieving a higher recognition rate (≥95%),indicating that it is a promising tool for automatic detection and classification of epileptic sei-zures.
出处 《纳米技术与精密工程》 CAS CSCD 北大核心 2015年第6期397-403,共7页 Nanotechnology and Precision Engineering
基金 国家自然科学基金资助项目(60905060) 江苏省自然科学基金资助项目(BK20141157) 中央高校科研业务费资助项目(2011B11114 2012B07314)
关键词 脑电 去趋势波动指数 癫痫发作 极限学习机 自动检测 electroencephalogram detrended fluctuation index epileptic seizures extreme learning ma-chine automatic detection
  • 相关文献

参考文献4

二级参考文献45

共引文献229

同被引文献17

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部