期刊文献+

框架高阶屈曲波形的应用价值分析

Application value analysis of high order buckling wave of frame
原文传递
导出
摘要 对顶层抽柱的四层三跨钢框架进行屈曲分析,采用传统计算长度系数法计算层抗侧刚度,并与SAP2000软件计算的层抗侧刚度比较发现,施加水平荷载求得的各层剪力之比与采用临界荷载方法计算的层抗侧刚度之比相等时,两者结果接近。对钢框架进行整体屈曲分析,指出第1屈曲模态对应的是薄弱层的屈曲,第2及以上屈曲模态因不能正确反映框架梁对框架柱的约束,不能直接加以应用。顶层抽柱导致屋面梁轴力加大,自身临界荷载降低,使得屋面梁对顶层柱的转动约束作用减小或消失,需要在顶层柱计算长度系数计算中予以考虑。 The buckling analysis of a four-layer and three-span steel frame without some columns in top layer was carried outby using the traditional calculation length coefficient method to calculate the lateral resistance stiffness of the layer. Thecomparison of the lateral resistance stiffness by traditional method and by the SAP2000 software was carried out. Resultsshow that two results are close when the ratio of the shear force of each layer by the horizontal load is equal to that the ratioof the lateral resistance stiffness of the layer by critical load method. The overall buckling analysis of the steel frame wascarried out, and the first buckling mode is pointed out to be the buckling of weak layer, and the second and higher bucklingmodes can not be used because they can not reflect the constraint of frame beam to frame column correctly. Lacking of somecolumns in top layer leads to increase of axial force in roof beam, decrease of critical load, and the decrease ordisappearance of the rotation constraint action of roof beam to frame column, which needs to be considered in calculation ofcalculation length coefficient of column in top layer.
出处 《建筑结构》 CSCD 北大核心 2015年第21期47-51,共5页 Building Structure
基金 杭州市科技局重点项目(20100333T25) 浙江省教育厅科研项目(Y201122425 Y201223824)
关键词 变截面梁 计算长度系数法 矩阵位移法 屈曲因子 抗侧刚度 临界荷载 beam with variable cross-section calculation length coefficient method matrix displacement method bucklingfactor lateral resistance stiffness critical load
  • 相关文献

参考文献3

二级参考文献10

  • 1[4]E.M. Lui,W. F. Chen, The Structural Engineer, 61B, No. 1,1983
  • 2[6]BS5950, Structural Use of Steelwork in Building -Part1,Code of Practice for design: rolled and welded sections. 2000年
  • 3[11]Bridge R. Q. , Clarke,M. J. ,etc. (1997), (Task Committee on Effective Length of The Strutural Engineering Institute of ASCE), Effective length and notional load approaches for assessing frame stability: Implications for American steel design. ASCE Publication
  • 4[1]陈骥.钢结构稳定理论和设计.科学出版社.2001年北京
  • 5[5]Duan,L. and Chen,W. F. (1989). "Effective length factor for columns in unbraced frames. "J. struct. Engrg., ASCE, 115(1) ,149-165.
  • 6[7]N. Kishi,W. F. Chen, and Y. Goto (1997) "Effective length factor of columns in semirigid and unbraced frames." J.Struct. Engrg. ,ASCE, 123(3) ,313-320.
  • 7[8]Salem, A. H. Discussion of" Buckling Analysis of One-Story Frames"by A. Zweig and H. Kahn, Journal of the Structural Division. ASCE,Vol. 95 ,No. ST5 ,May, 1969
  • 8[9]Bridge,R. Q. and Fraser, D. J. (1986). "Improved C-factor method for evaluating effective lengths of columns." J.Struct. Engrg. ,ASCE, 113(6), 1341-1356.
  • 9[10]Hellesland,J. and Bjorhovde, R. (1996). "Restraint demand factors and effective lengths of braced columns." J. Struct.Engrg. ,ASCE,122(10) ,1216-1224.
  • 10[11]Hellesland,J. and Bjorhovde,R. (1996). "Improved Frame Stability Analysis with Effective Lengths." J. Struct. Engrg. ,ASCE, 122(11) ,1275-1283.

共引文献708

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部