期刊文献+

共识满意度驱动的异质群体共识度测算方法 被引量:2

A consensus measure method for heterogeneous group driven by consensus satisfaction degree
原文传递
导出
摘要 研究群体共识决策过程的共识测度问题.从共识协调者的角度定义异质群体的共识满意度指标,用以表征共识协调者对群体关于一对方案评价值达成共识的乐观估计程度;建立一种新的OWA算子权重确定模型,构建共识满意度驱动算子对专家的偏好相似度进行集结;提出一种计算异质群体共识测度的方法.最后,通过一个算例说明方法的应用步骤与可行性. A consensus measure problem is studied in the process of consensus decision making. From the perspective of a consensus coordinator, the optimistic level of reaching a consensus in the group about preferences over paired comparisons of the objectives can be characterized by a consensus satisfaction degree index of heterogeneous group. An OWA operator based on consensus satisfaction degree, whose weights are established by a novel determining weight model, is presented to aggregate the preference similarities of experts. A consensus degree calculation method for heterogeneous group is developed. Finally, a numerical case is used to illustrate the above operations, which can demonstrate the feasibility and validity of the proposed method.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2015年第11期2898-2908,共11页 Systems Engineering-Theory & Practice
基金 国家社会科学基金重点项目(14AZD049) 国家自然科学基金(71171112) 江苏省高校哲学社会科学重点项目(2012ZDIXM007) 江苏省普通高校研究生科研创新计划项目(KYZZ_0095)
关键词 群决策 共识 共识满意度 OWA算子 异质群体 group decision-making consensus consensus satisfaction degree OWA operator heterogeneous group
  • 相关文献

参考文献25

  • 1Herrera-Viedma E, Garcfa-Lapresta J L, Kacprzyk J, et al. Consensual processes, studies in fuzziness and soft computing[M]. Berlin Heidelberg: Springer-Verlag, 2011: 358-359.
  • 2Cabrerizo F J, Moreno J M, Prez I J, et al. Analyzing consensus approaches in fuzzy group decision making: Advantages and drawbacks[J]. Soft Computing, 2010, 14(5): 451-463.
  • 3Herrera-Viedma E, Alonso S, Chiclana F, et al. A consensus model for group decision making with incomplete fuzzy preference relations[J]. IEEE Transactions on Fuzzy Systems, 2007, 15(5): 863-877.
  • 4Mata F, Martfnez L, Herrera-Viedma E. An adaptive consensus support model for group decision-making prob- lems in a multigranular fuzzy linguistic context[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(2): 279-290.
  • 5Chen S M, Lee L W, Yang S W, et al. Adaptive consensus support model for group decision making systems[J]. Expert Systems with Applications, 2012, 39(16): 12580 -12588.
  • 6Chiclana F, Tapia Garcfa J M, del Moral M J, et al. A statistical comparative study of different similarity measures of consensus in group decision making[J]. Information Sciences, 2013, 221(1): 110-123.
  • 7Palomares I, Liu J, Xu Y, et al. Modelling experts' attitudes in group decision making[J]. Soft Computing, 2012, 16(10): 1755 -1766.
  • 8Palomares I, Rodrfguez R M, Martfnez L. An attitude-driven web consensus support system for heterogeneous group decision making[J]. Expert Systems with Applications, 2013, 40(1): 139- 149.
  • 9Xu Z S. An overview of methods for determining OWA weights[J]. International Journal of Intelligent Systems, 2005, 20(8): 843 -865.
  • 10Liu X W. Some properties of the weighted OWA operator[J]. IEEE Transactions on Systems, Man, and Cyber- netics - Part B: Cybernetics, 2006, 36(1): 118-127.

同被引文献29

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部