A Remark on the Level Sets of the Graph of Harmonic Functions Bounded by Two Circles in Parallel Planes
被引量:1
A Remark on the Level Sets of the Graph of Harmonic Functions Bounded by Two Circles in Parallel Planes
摘要
In this paper, we find two auxiliary functions and make use of the maximum principle to study the level sets of harmonic function defined on a convex ring with homogeneous Dirichlet boundary conditions in R2. In higher dimensions, we also have a similar result to Jagy's.
参考文献10
-
1Ahlfors L. V., Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Dsseldorf-Johannesburg, 1973, 5-6.
-
2Shiftman M., On surfaces of stationary area bounded by two circles or convex curves in parallel planes. Annals of Math. 63 (1956), 77-90.
-
3Gabriel R., A result concerning convex level surfaces of 3-dimensional harmonic functions. J. London Math. Soc. 32 (1957), 286-294.
-
4Lewis J. L., Capacitary functions in convex rings. Arch. Rational Mech. Anal. 66 (1977), 201-224.
-
5Jagy W., Minimal hypersurfaces foliated by spheres. Michigan Math.J. 38 (1991), 255-270.
-
6Korevaar N. J., Convexity of level sets for solutions to elliptic ring problems. Comm. Partial Differential Equations. 15 (4) (1990), 541-556.
-
7Talenti G., On functions whose lines of steepest descent bend proportionally to level lines. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (4) (1983), 587-605.
-
8Ma Xi-Nan, Ou Qianzhong and Zhang Wei, Gaussian curvature estimates for the convex level sets of p-harmonic functions. Comm. Pure Appl. Math. 63 (7) (2010), 935-971.
-
9Kawohl B., Rearrangements and convexity of level sets in PDE. Lecture Notes in Mathematics, 1150. Springer-Verlag, Berlin, 1985,1-134.
-
10Schoen R., Uniqueness, symmetry, and embeddedness of minimal surfaces. J. Differential Geom. 18 (1983), 791-809.
-
1Duan Haibao,Rees Elmer G..Focal Sets of Hypersurfaces[J].Acta Mathematica Sinica,English Series,1995,11(3):252-255.
-
2Weian ZhengDepartment of Mathematics,University of California,Irvine,CA92612,U S ADepartment of Statistics,East China Normal University,Shanghai 200062,P.R.China E-mail:wzhengmath.uci.edu.Stability of Time-Dependent Diffusion Semigroups and Kernels[J].Acta Mathematica Sinica,English Series,1999,15(4):575-586.
-
3K.RAMAKRISHNAN,K.SHAILENDHRA.Hydromagnetic flow through uniform channel bounded by porous media[J].Applied Mathematics and Mechanics(English Edition),2011,32(7):837-846.
-
4Chuanqiang CHEN,Xinan MA,Shujun SHI.Curvature Estimates for the Level Sets of Solutions to the Monge-Ampère Equation det D^2u = 1[J].Chinese Annals of Mathematics,Series B,2014,35(6):895-906. 被引量:4
-
5Guojin Wang,Thomas W. Sederberg.COMPUTING AREAS BOUNDED BYRATIONAL BEZIER CURVES[J].Computer Aided Drafting,Design and Manufacturing,1994,4(2):18-27. 被引量:4
-
6Hu Jian-guo 1, Chen yue-ping 2 1. School of Urban Studies,Wuhan University,Wuhan 430072, Hubei, China,2.College of Politics and Administration,Wuhan University, Wuhan 430072,Hubei, China.Mathematical Model of the Identical Slope Surface[J].Wuhan University Journal of Natural Sciences,2002,7(1):54-58. 被引量:1
-
7CHEN ChuanQiang,SHI ShuJun.Curvature estimates for the level sets of spatial quasiconcave solutions to a class of parabolic equations[J].Science China Mathematics,2011,54(10):2063-2080. 被引量:6
-
8Chang-qing TONG,Zheng-yan LIN,Jing ZHENG.The Fractal Dimensions of the Level Sets of the Generalized Iterated Brownian Motion[J].Acta Mathematicae Applicatae Sinica,2013,29(3):597-602.
-
9汪前喜,庄礼贤,童秉纲.GENERAL EXACT SOLUTION OF INCOMPRESSIBLE POTENTIAL FLOWS AROUND TWO CIRCLES[J].Acta Mechanica Sinica,1993,9(1):27-29.
-
10JIA Hui-ming,LIN Cheng-jian,ZHANG Huan-qiao,LIU Zu-hua,YANG Feng,XU Xin-xing,YANG Lei,BAO Peng-fei,SUN Li-jie,MA Nan-ru.Near-barrier Fusion of 32S+94Zr[J].Annual Report of China Institute of Atomic Energy,2013(1):50-51.