期刊文献+

A Remark on the Level Sets of the Graph of Harmonic Functions Bounded by Two Circles in Parallel Planes 被引量:1

A Remark on the Level Sets of the Graph of Harmonic Functions Bounded by Two Circles in Parallel Planes
原文传递
导出
摘要 In this paper, we find two auxiliary functions and make use of the maximum principle to study the level sets of harmonic function defined on a convex ring with homogeneous Dirichlet boundary conditions in R2. In higher dimensions, we also have a similar result to Jagy's.
出处 《Journal of Partial Differential Equations》 CSCD 2015年第3期197-207,共11页 偏微分方程(英文版)
  • 相关文献

参考文献10

  • 1Ahlfors L. V., Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Dsseldorf-Johannesburg, 1973, 5-6.
  • 2Shiftman M., On surfaces of stationary area bounded by two circles or convex curves in parallel planes. Annals of Math. 63 (1956), 77-90.
  • 3Gabriel R., A result concerning convex level surfaces of 3-dimensional harmonic functions. J. London Math. Soc. 32 (1957), 286-294.
  • 4Lewis J. L., Capacitary functions in convex rings. Arch. Rational Mech. Anal. 66 (1977), 201-224.
  • 5Jagy W., Minimal hypersurfaces foliated by spheres. Michigan Math.J. 38 (1991), 255-270.
  • 6Korevaar N. J., Convexity of level sets for solutions to elliptic ring problems. Comm. Partial Differential Equations. 15 (4) (1990), 541-556.
  • 7Talenti G., On functions whose lines of steepest descent bend proportionally to level lines. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (4) (1983), 587-605.
  • 8Ma Xi-Nan, Ou Qianzhong and Zhang Wei, Gaussian curvature estimates for the convex level sets of p-harmonic functions. Comm. Pure Appl. Math. 63 (7) (2010), 935-971.
  • 9Kawohl B., Rearrangements and convexity of level sets in PDE. Lecture Notes in Mathematics, 1150. Springer-Verlag, Berlin, 1985,1-134.
  • 10Schoen R., Uniqueness, symmetry, and embeddedness of minimal surfaces. J. Differential Geom. 18 (1983), 791-809.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部