期刊文献+

Parametric Instabilities of Parallel Propagating Circularly Polarized Alfven Waves:One-Dimensional Hybrid Simulations

Parametric Instabilities of Parallel Propagating Circularly Polarized Alfven Waves:One-Dimensional Hybrid Simulations
下载PDF
导出
摘要 By performing one-dimensional (l-D) hybrid simulations, we analyze in detail the parametric instabilities of the Alfv^n waves with a spectrum in a low beta plasma. The parametric instabilities experience two stages. In the first stage, the density modes are excited and immediately couple with the pump Alfv6n waves. In the second stage, each pump Alfv^n wave decays into a density mode and a daughter Alfv6n mode similar to the monochromatic cases. Ftlrthermore, the proton velocity beam will also be formed after the saturation of the parametric instabilities. When the plasma beta is high, the parametric decay in the second stage will be strongly suppressed. By performing one-dimensional (l-D) hybrid simulations, we analyze in detail the parametric instabilities of the Alfv^n waves with a spectrum in a low beta plasma. The parametric instabilities experience two stages. In the first stage, the density modes are excited and immediately couple with the pump Alfv6n waves. In the second stage, each pump Alfv^n wave decays into a density mode and a daughter Alfv6n mode similar to the monochromatic cases. Ftlrthermore, the proton velocity beam will also be formed after the saturation of the parametric instabilities. When the plasma beta is high, the parametric decay in the second stage will be strongly suppressed.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第11期85-91,共7页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 41331067,41474125,41274144,41174124 and 41121003 the National Basic Research Program of China under Grant Nos 2013CBA01503 and 2012CB825602 the Key Research Program of Chinese Academy of Sciences under Grant No KZZD-EW-01-4
  • 相关文献

参考文献25

  • 1Wang A K, Wang S G, Xue R J, Liu G C and Zhao K 2014 Chin. Phys. Lett. 31 066102.
  • 2Wang W H 2012 Prog. Mater. Sci. 57 487.
  • 3Bai Q~ Xu H, Tan X H and Meng T 2009 Chin. Phys. Lett. 26 057503.
  • 4Li M Z, Wang C Z, Hao S G, Kramer M J and Ho K M 2009 Phys. Rev. B 80 184201.
  • 5Peng H L, Li M Z and Wang W H 2011 Phys. Rev. Lett. 106 135503.
  • 6Wang W H, Dong C and Shek C H 2004 Mater. Sci. Eng. R 44 45.
  • 7Yang B and Lai W S 2009 Chin. Phys. Lett. 26 066103.
  • 8Jing Q, Xu Y~ Zhang X Y~ Li G, Li L X, Xu Z, Ma M Z and Liu R P 2009 Chin. Phys. Lett. 26 086109.
  • 9Tang M B, Zhuo D Q, Pan M X and Wang W H 2004 Chin. Phys. Lett. 21 901.
  • 10Tang X P, Geyer U, Busch R, Johnson W L and Wu Y 1999 Nature 402 160.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部