期刊文献+

基于改进的KPCA和LSSVM飞灰含碳量的软测量建模 被引量:1

Soft Measurement Model of Unburned Carbon in Fly Ash Based on Improved KPCA and LSSVM
下载PDF
导出
摘要 以华能嘉祥电厂330 MW机组为例,针对火电厂飞灰含碳量影响因素的非线性和耦合性的问题,提出一种优化样本的KPCA(核主元分析)方法,利用加权相似度优化样本,再对其进行核主元分析,建立基于加权相似度的KPCA和LSSVM(最小二乘支持向量机)的炉膛温度软测量模型。现场实测数据表明,运用该软测量模型监测效果良好,不仅避免了在测量装置损坏时影响生产的弊端,满足飞灰含碳量实时测量要求,还为提高锅炉运行效率提供了依据。 Taking the 330 MW unit of Huaneng Jiaxiang power plant as an example,the KPCA (kernel principal component analysis) method is proposed to analyze impacting factors on the carbon content of the fly ash in the power plant.The KPCA and LSSVM (least square support vector maehine)are used to establish the model of the furnace temperature.Field test data show that the use of the soft measurement model is of considerable resuh,whieh helps to avoid the negative affeet to the production when any damage occurred to the measuring devices and meets the requirements of real-time measurement of carbon content in fly ash.More over,it also helps to improve the effieiency of the boiler.
出处 《山东电力技术》 2015年第10期40-43,50,共5页 Shandong Electric Power
关键词 飞灰含碳量 加权相似度 核主元分析 最小二乘支持向量机 软测量 carbon content of fly ash weighted similarity kernerl prineipal component analYsis least squares support veetor maehine soft measurement
  • 相关文献

参考文献9

二级参考文献33

  • 1付克昌,吴铁军.基于特征子空间的KPCA及其在故障检测与诊断中的应用[J].化工学报,2006,57(11):2664-2669. 被引量:19
  • 2赵志刚,赵伟.基于动态不确定度理论的多传感器系统传感器失效检测方法[J].传感技术学报,2006,19(6):2723-2726. 被引量:15
  • 3徐涛,王祁.基于小波包的多尺度主元分析在传感器故障诊断中的应用[J].中国电机工程学报,2007,27(9):28-32. 被引量:15
  • 4Vapnik V. An Overview of Statistical Learning Theory[J]. IEEE Trans.Neural Networks (S 1045-9227), 1999, 10(5): 988-999.
  • 5Suykens J A K, Vandewalle J. Least Squares Support Vector Machine Classifiers[J]. Neural Processing Letters(S1370-4621), 1999, 9(3):293-300.
  • 6Cho Ji-Hoon,Lee Jong-Min,Wook Choi Sang,Lee Dongkwon,Lee In-Benm.Fault identification for process monitoring using kernel principal component analysis.Chemical Engineering Science,2005,60:279-288
  • 7Dong D,Mcavoy T J.Nonlinear principal component analysis based on principal curves and neural networks.Computers and Chemical Engineering,1996,20:65-78
  • 8Scholkopf B,Smola A,Muller K.Nonlinear component analysis as a kernel eigenvalue problem.Neural Computation,1998,10(5):1299-1319
  • 9Kramer M A.Nonlinear principal component analysis using autoassociative neural networks.AIChE Journal,1991,37(2):233-243
  • 10Dong D,McAvoy T J.Nonlinear principal component analysis based on principal curves and neural networks.Computers and Chemical Engineering,1996,20:65-78

共引文献68

同被引文献16

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部