期刊文献+

基于混沌粒子群算法和小波SVM的P2P流量识别方法 被引量:3

Peer-to-Peer Traffic identification Method Based on Chaos Particle Swarm Algorithm and Wavelet SVM
下载PDF
导出
摘要 针对对等网络(Peer-to-Peer,P2P)流量具有的多尺度和突变性等问题,提出了基于小波核函数的支持向量机(Support Vector Machine,SVM)的P2P流量识别算法。进一步,对常用的SVM参数训练方法训练时间过长和易陷入局部极优值等缺陷进行分析,使用混沌粒子群算法对SVM参数进行优化以提高参数训练效率和识别准确率。最后利用真实的校园网网络流量数据对所提方法的有效性进行测试,结果表明,相对于使用传统核函数和参数训练方法的支持向量机P2P流量识别方法,所提方法具有更高的P2P流量识别正确率和计算效率。 A novel peer-to-peer(P2P)traffic identification algorithm was proposed as the P2P traffic has the features of multi-scale and mutability. The identification algorithm is based on support vector machine (SVM) with the wavelet kernel function. Further,the disadvantages of long training time and easily falling into local minimum in the SVM pa- rameters training methods were analyzed,and chaos particle swarm algorithm was employed to optimize the SVM pa- rameters in order to improve the efficiency of parameters training and the identification accuracy. Finally, the real cam- pus network traffic data were used to test the efficiency of the proposed method. The experimental results show that the proposed method has higher identification accuracy and computational efficiency compared with the support vector ma- chine with the traditional kernel function and parameters training method.
出处 《计算机科学》 CSCD 北大核心 2015年第10期117-121,共5页 Computer Science
基金 国家自然科学基金项目:基于不可分小波核函数支持向量机的对等网络流量识别(61170135)资助
关键词 P2P流量识别 支持向量机 小波 混沌粒子群优化算法 P2P traffic identification,Support vector machine,Wavelet,Chaos particle swarm optimization algorithm
  • 相关文献

参考文献15

  • 1Bin Liu. A Semi-Supervised Clustering Approach for P2P TrafficClassification [J]. Journal of networks,2011,6(3) : 424-431.
  • 2鲁刚,张宏莉,叶麟.P2P流量识别[J].软件学报,2011,22(6):1281-1298. 被引量:48
  • 3董仕,王岗.基于UDP流量的P2P流媒体流量识别算法研究[J].通信学报,2012,33(12):25-34. 被引量:8
  • 4Xu Ke,Zhang Ming, Ye Ming-jiang,et al. Identify P2P traffic byinspecting data transfer behavior [J]. Computer Communica-tions,2010(33) : 1141-1150.
  • 5Keralapura R,Nucci A,Chuah C-N. A novel self-learning archi-tecture for p2p traffic classification in high speed networks [J].Computer Networks,2010(54) : 1055-1068.
  • 6许博,陈鸣,魏祥麟.基于隐马尔科夫模型的P2P流识别技术[J].通信学报,2012,33(6):55-63. 被引量:9
  • 7谭骏,陈兴蜀,杜敏,朱锴.基于自适应BP神经网络的网络流量识别算法[J].电子科技大学学报,2012,41(4):580-585. 被引量:17
  • 8Chen H W,Hu Z B,YE Z W. Research of P2P Traffic Identifica-tion Based on Neural Network [C] // Computer Network andMultimedia Technology.2009(CNMT 2009). Jan. 2009: 1-4.
  • 9Jin F L,Duan Y F. A P2P flow Identification Model Based onBayesian Network [C] // 2011 7th International ConferenceWireless Communications,Networking and Mobile Computing(WiCOM). Sept. 2011:1-4.
  • 10Wang Chun-zhi, Wang Ze-qi. Ye Zhi-wei. et al. A P2P TrafficIdentification Approach Based on SVM and BFA [J]. IndonesianJournal of Electrical Engineering,2013,12(4) :2833-2842.

二级参考文献89

共引文献197

同被引文献22

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部