期刊文献+

一种基于聚类模式的RDF数据聚类方法 被引量:3

Cluster Pattern Based RDF Data Clustering Method
下载PDF
导出
摘要 如何有效管理并利用日益庞大的RDF数据是当今Web数据管理领域面临的挑战之一。对大规模的RDF数据集进行聚类操作从而得到数据集的有效划分是RDF数据存储和应用时通常采取的策略。针对现有RDF聚类过程中忽略RDF三元组自身模式特征的问题,在对RDF聚类结果的形式深入分析的基础上,定义了3种不同类型的聚类模式,从而提出基于模式的聚类方法。通过对RDF数据集的重新描述,自动生成适用于RDF数据集特征的聚类模式,在此基础上实现数据聚类的任务。在不同测试集上的实验结果验证了所提方法的正确性和有效性。 How to manage and exploit the large mount of RDF dataset availably has become a vital issue in Web data management field. In order to partition the large scale RDF dataset for efficient data processing, clustering is usually adopted. The related researches tend to use classical clustering methods, and neglect the structure features of RDF tri- ples. This paper analyzed the RDF clustering results intensively, and defined three types of cluster patterns. Based on the cluster patterns,a novel RDF data clustering strategy was proposed. By redescribing the RDF dataset, the cluster patterns can be generated automatically. The experiments on different test benches prove the accuracy and efficiency of the new method.
作者 袁柳 张龙波
出处 《计算机科学》 CSCD 北大核心 2015年第10期266-270,296,共6页 Computer Science
基金 国家自然科学基金项目:云计算环境下旅游信息个性化服务模型研究(41271387)资助
关键词 聚类 开放关联数据 聚类模式 RDF, Clustering, Linked open data, Clustering pattern
  • 相关文献

参考文献16

  • 1Bizer C,Heath T,Berners-Lee T,et al. Linked data on the Web[C] // Proceedings of the 17th International Conference onWorld Wide Web. 2008: 1265-1266.
  • 2Tran T,Wang H, Haase P. Hermes:Data web search on a pay-as-you-go integration infrastructure [ J ] Web Semantics: Science,Services and Agents on the World Wide Web,2009, 7(3) : 189-203.
  • 3Zeng K, Yang J, et al, A distributed graph engine for web scalerdf data[C] // Proceedings of the 39th International Conferenceon Very Large Data Bases. 2013:265-276.
  • 4Wu A Y, Garland M,Han J. Mining scale-free networks usinggeodesic clustering[C] // Proceedings of the Tenth ACM SIGK-DD International Conference on Knowledge Discovery and DataMining. 2004:719-724.
  • 5Kaushik R, Shenoy P, Bohannon P, et al. Exploiting local simi-larity for indexing paths in graph-structured data[C]//Procee-dings of the 18th International Conference on Data Engineering.2002:129-140.
  • 6Konrath M,Gottron T, Staab S,et al. Schemex efficient con-struction of a data catalogue by stream-based indexing of linkeddata[J]. Web Semantics: Science, Services and Agents on theWorld Wide Web,2012,16:52-58.
  • 7Boohm C, Lorey J, Naumann F. Creating void descriptions forWeb-scale data[J]. Web Semantics : Science.Services and Agentson the World Wide Web,2011,9(3) :339-345.
  • 8Fanizzi N, d,Amato C. A hierarchical clustering method for se-mantic knowledge bases[C]//Proceedings of KES 2007. 2007 :653-660.
  • 9Grimnes G A,Edwards P,Preece A D. Instance based clusteringof semantic web resources [C] // Proceedings of ESWC 2008.2008:303-317.
  • 10Alzogbi A,Lausen G. Similar structures inside rdf~graphs[C]//Proceedings of Proceedings of the WWW 2013 Workshop onLinked Data on the Web. 2013.

二级参考文献22

  • 1李曼,杜小勇,王珊.语义Web环境中本体库管理系统体系结构研究[J].计算机研究与发展,2006,43(z3):39-45. 被引量:2
  • 2吴刚,唐杰,李涓子,王克宏.细粒度语义网检索[J].清华大学学报(自然科学版),2005,45(S1):1865-1872. 被引量:11
  • 3Berners-Lee T,Hendler J,Lassila O.The semantic Web.Scientific American,2001,284(5):34-43.
  • 4Cheng G,Qu Y.Searching linked objects with falcons:Approach,implementation and evaluation.International Journal on Semantic Web and Information Systems,2010,5(3):49-70.
  • 5Perez J,Arenas M,Gutierrez C.Semantics and complexity of SPARQL//Proceedings of the International Semantic Web Conference.Athens,GA,USA,2006:30-43.
  • 6Broekstra J.SeRQL:Sesame RDF query language//Ehrig M.SWAP Deliverable 3.2 Method Design.2003.:55-68.
  • 7Lei Y,Uren V,Motta E.Semsearch:A search engine for the semantic Web//Proceedings of the EKAW.Podebrady,Czech Republic,2006:238-245.
  • 8Zhou Q,Wang C,Xiong M,Wang H,Yu Y.SPARK:Adapting keyword query to semantic search/ /Proceedings of the ISWC.Busan,Korea,2007:649-707.
  • 9Tran T,Wang H,Rudolph S,Cimiano P.Top-kexploration of query candidates for efficient keyword search on graphshaped (RDF) data//Proceadings of the IEEE International Conference on Data Engineering.Shanghai,China,2009:405-416.
  • 10Lamberti F,Sanna A,Demartini C.A relation-based page rank algorithm for semantic Web search engines.IEEE Transactions on Knowledge and Data Engineering,2009,21 (1):123-136.

共引文献82

同被引文献32

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部