期刊文献+

基于粗糙集的加权KNN数据分类算法 被引量:7

Weighted KNN Data Classification Algorithm Based on Rough Set
下载PDF
导出
摘要 粗糙集是处理不精确、不确定性问题的基本方法之一。采用粗糙集理论与方法进行数据分析具有不必具备数据集的先验知识、不需人为设定参数等优点,因而它被广泛应用于模式识别与数据挖掘领域。针对粗糙集训练过程中从未遇到过的样本的分类问题进行了探讨,根据条件属性的重要性确定加权系数,采用加权KNN的方法来解决无法与决策规则精确匹配的样本分类问题,并与加权最小距离方法进行了对比实验;同时对其他一些现有的粗糙集值约简算法进行了分析与研究,提出了不同的观点。对UCI多个数据集的大量数据进行了实验,并与近期文献中的多种算法进行了性能对比,实验结果表明,提出的算法的总体效果优于其他算法。 Rough set is one of the basic methods in dealing with the imprecise or indefinite problems. For its advantages that the priori knowledge about analyzing dataset isn't necessary and the parameters analysis needn't to be set artifi- cially, rough set is widely used in pattern recognition and data mining fields. For rough set theory, a core problem is how to classify the sample which has never been met in the process of training. This problem was discussed in detail in this paper. According to the importance of the condition attributes, a weighted KNN algorithm was proposed to classify the samples which can' t precisely match to decision rules, and the contrast test with the weighted minimum distance (WMD) method was made to show the efficiency of our algorithm. At the same time, the existing algorithms about the attribute value reduction in rough set were analyzed and another point of view was put forward. The experiments on several UCI data sets and comparison with various existing algorithms proposed recently show that our algorithm is su- perior to these algorithms in overall effect.
出处 《计算机科学》 CSCD 北大核心 2015年第10期281-286,共6页 Computer Science
基金 国家自然科学基金地区项目(61165009) 国家自然科学基金(61365009)资助
关键词 粗糙集 加权KNN 加权最小距离 属性值约简 Rough set,Weighted KNN,Weighted minimal distance,Attribute value reduction
  • 相关文献

参考文献18

  • 1Pawlak Z. Rough sets: Theoretical aspects of reasoning aboutdata[M]. Dordrecht Boston; Kluwer Academic Publishers,1991.
  • 2Theodoridis S, Koutroumbas K.模式识别(第 2 版)[M].李晶皎,朱志良,王爱侠,等译.北京:电子工业出版社,2004.
  • 3Mitra S. An Evolutionary Rough Partitive Clustering Pattern[J], Recognition Letters,2004,25(12) : 1439-1449.
  • 4Gibert K, Rodriguez-Silva G, Rodriguez-Roda I. Knowledge dis-covery with clustering based on rules by states: A water treat-ment application [J]. Environmental Modelling Software,2010,25(6):712-723.
  • 5Lai J Z C,Juan E Y T,Lai F J C. Rough clustering using gene-ralized fuzzy clustering algorithm [J]. Pattern Recognition,2013,46(9):2538-2547.
  • 6安利平,陈增强,袁著祉.基于粗集理论的多属性决策分析[J].控制与决策,2005,20(3):294-298. 被引量:16
  • 7马峻,吉晓民.利用粗糙集理论实现工艺决策的冲突消解[J].计算机辅助设计与图形学学报,2005,17(3):600-604. 被引量:5
  • 8Hu X,Cercone N. Learning in relational databases: a rough setapproach[J], Computational Intelligence, 1995,11(2): 323-338.
  • 9Swiniarski R W,Skowron A. Rough set methods in feature se-lection and recognition[J]. Pattern Recognition Letters.2003,24(6):833-849.
  • 10Felix R’Ushio T. Rough sets-based machine learning using a bi-nary discernibility matrix[C] //Proceedings of the Second Inter-national Conference on Intelligent Processing and Manufacturingof Materials, 1999(IPMM'99). IEEE, 1999:299-305.

二级参考文献64

  • 1胡玉荣,王丽珍.一种基于属性值重要性的启发式值约简算法[J].荆门职业技术学院学报,2006,21(3):24-28. 被引量:4
  • 2王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 3马凌,蒋外文,王加阳.基于Rough Set理论的一种属性值约简算法[J].计算机与数字工程,2006,34(9):41-44. 被引量:3
  • 4张东波,王耀南.FCM聚类算法和粗糙集在医疗图像分割中的应用[J].仪器仪表学报,2006,27(12):1683-1687. 被引量:32
  • 5ZHANG L, LU X Y, WU H Y. An improved heuristic algorithm used in attribute reduction of rough Set [ C ]. Proceedings of The First International Symposium on Data, Privacy and E-Commerce (ISDPE 2007 ), 2007: 44-46.
  • 6Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data[M]. Dordrecht, Netherland: Kluwer Academic Publisher, 1991.
  • 7Jensen R, Shen Q. Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-based approaches[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(12): 1457-1471.
  • 8Su F Z, Zhou C H, Shi W Z. Geoevent association rule discovery model based on rough set with marine fishery application[A]. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium[C]. Piscataway, NJ, USA: IEEE, 2004. 1455-1458.
  • 9Wang H J, Wei S L, Chen Y M. An improved attribute reduction algorithm based on rough set[A]. Proceedings of the Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing[C]. Piscataway, NJ, USA: IEEE, 2007. 1007-1010.
  • 10Al-Radaideh Q A, Sulaiman M N, Selamat M H, et al. Approximate reduct computation by rough sets based attribute weighting[A]. Proceedings of the IEEE International Conference on Granular Computing[C]. Piscataway, NJ, USA: IEEE, 2005. 383-386.

共引文献392

同被引文献60

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部