期刊文献+

基于非负邻域嵌入和非局部正则化的单帧图像超分辨率重建算法 被引量:2

Single-frame Image Super-resolution Reconstruction Algorithm Based on Nonnegative Neighbor Embedding and Non-local Means Regularization
下载PDF
导出
摘要 单帧图像超分辨率重建是指利用一幅低分辨率图像,通过相应的算法来获取一幅高分辨率图像的技术。提出了一种基于非负邻域嵌入和非局部正则化的单帧图像超分辨率重建算法,以弥补传统邻域嵌入算法的不足。在训练阶段,首先对低分辨率图像预放大2倍,以保证在放大倍数较大时,高、低分辨率图像块之间的邻域关系也能得到较好的保持;在重建阶段,使用非负邻域嵌入来有效地解决近邻数的选取问题;最后利用图像块的非局部相似性构造非局部正则项对重建结果进行修正。实验结果表明,相对于传统算法,本方法的重建结果纹理丰富、边缘清晰。 Single-frame image super-resolution(SR) reconstruction aims to obtain a high-resolution (HR) image from a low-resolution (LR) input image. To overcome the limitations of traditional neighbor-embedding-based algorithm, we proposed a single-frame image super-resolution reconstruction algorithm based on nonnegative neighbor embedding and non-local means regularization. In the training phase, the LR images are magnified 2 times at first, leading to better pres- ervation of neighborhood between LR and HR images in case of high magnification factor. In the reconstruction phase, non-negative neighbor embedding is employed to select neighborhood number effectively. Finally, a non-local means reg- ularization term is introduced into the final reconstruction process by taking advantage of the non-local similarity be- tween natural image patches. Experimental results demonstrate that the proposed method can achieve results with richer textures and sharper edges compared with those from traditional methods.
出处 《计算机科学》 CSCD 北大核心 2015年第11期104-107,143,共5页 Computer Science
基金 国家杰出青年科学基金资助项目(61125204) 中央高校基本科研业务费专项资金资助项目(K5051202048) 西安电子科技大学基本科研业务费资助项目(JB140217)资助
关键词 超分辨率重建 非局部均值 邻域嵌入 正则化 Super-resolution reconstruction, Non-local means, Neighbor embedding, Regularization
  • 相关文献

参考文献15

  • 1Li X, Orchard M T. New edge-directed interpolation[J]. IEEETransactions on Image Processing,2001,10(10) : 1521-1527.
  • 2Zhang D, Wu X. An edge-guided image interpolation algorithmvia directional filtering and data fusion[J]. IEEE Transactionson Image Processing, 2006,15(8) : 2226-2238.
  • 3IraniM. Peleg S. Super resolution from image sequences [C] #10th International Conference on Pattern Recognition, 1990.IEEE,1990:115-120.
  • 4Schultz R R,Stevenson R L. Improved definition video frame en-hancement [CH // International Conference on Acoustics . Speech,and Signal Processing, 1995 (ICASSP-95 ). IEEE, 1995 : 2169-2172.
  • 5Lin Z.He J,Tang X, et al. Limits of learning-based supei^reso-lution algorithms[J]. International journal of computer vision,2008,80(3):406-420.
  • 6Chang H, Yeung D Y,Xiong Y. Super-resolution through neigh-bor embedding[C] // Proceedings of the 2004 IEEE ComputerSociety Conference on Computer Vision and Pattern Recogni-tion, 2004(CVPR 2004). IEEE,2004:275-282.
  • 7Chan T M, Zhang J.Pu J, et al. Neighbor embedding based su-per-resolution algorithm through edge detection and feature se-lection[J]. Pattern Recognition Letters,2009,30(5) .494-502.
  • 8Roweis S T, Saul L K. Nonlinear dimensionality reduction by lo-cally linear embedding[J], Science, 2000,290 (5500) : 2323-2326.
  • 9Lee D D,Seung H S. Learning the parts of objects by non-nega- tive matrix factorization[J]. Nature, 1999,401(6755)..788-791.
  • 10Elad M, Feuer A. Restoration of a single superresolution imagefrom several blurred, noisy, and undersampled measured images[J]. IEEE Transactions on Image Processing,1997,6(12) :1646-1658.

同被引文献21

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部