期刊文献+

基于视觉运动特性的视频时空显著性区域提取方法 被引量:3

Motion Characteristics Based Video Salient Region Extraction Method
下载PDF
导出
摘要 为了更准确有效地提取人眼观察视频的显著性区域,提出一种基于视觉运动特性的视频时空显著性区域提取方法。该方法首先通过分析视频每帧的频域对数谱得到空域显著图,利用全局运动估计和块匹配得到时域显著图,再结合人眼观察视频时的视觉特性,根据对不同运动特性视频的主观感知,动态融合时空显著图。实验分析从主客观两个方面衡量。视觉观测和量化指标均表明,与其他经典方法相比,所提方法提取的显著性区域能够更准确地反映人眼的视觉注视区域。 The human eyes only observe the salient region of the video. Thus a motion characteristics based salient re- gion extraction method was proposed. Spatial saliency map is extracted by analyzing the log spectrum of each frame in the frequency domain. Temporal saliency map is obtained by global motion estimation and block matching. According to the human visual characteristics and the subjective perception of different motion characteristics, the region of saliency is fused dynamically by spatial and temporal saliency map. The experiment was analyzed from both subjective and objective indicators. Visual observation and quantitative indicators show that the proposed method can reflect the human visual attention area more accurately than other classical extraction methods.
出处 《计算机科学》 CSCD 北大核心 2015年第11期118-122,共5页 Computer Science
基金 国家自然科学基金项目(61172165) 广东省自然科学基金项目(S2011010006113)资助
关键词 显著性区域 视觉注意模型 时域显著度 空域显著度 运动特性 Region of saliency, Visual attention model, Temporal saliency, Spatial saliency, Motion characteristics
  • 相关文献

参考文献12

  • 1张菁,卓力,李晓光.新一代高效视频编码技术[M].北京:人民邮电出版社,2013.
  • 2Koch C,Itti L, Niebur E. A Model of Saliency-Based Visual At-tention for Rapid Scene Analysis[J]. IEEE Transactions on Pat-tern Analysis and Machine Intelligence, 1998^20(11) : 1254-1259.
  • 3Koch C,Harel J, Perona P. Graph-Based Visual Saliency[M]//Advances in Neural Information Processing Systems. 2007 : 681-688.
  • 4Walther D,Koch C. Modeling Attention to Salient Proto-objcets[J]. Neural Networks, 2006,19(9) : 1395-1407.
  • 5Bamidele A,Stentiford F W M. An attention based similaritymeasure used to identify image clusters [OL]. http://www.doc88. com/P-9592796942640. html.
  • 6Hou X. Harel J, Koch C. Image Signature: Highlighting SparseSalient Regions[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2012,34(1) : 194-201.
  • 7刘晓辉,金志刚,赵安安,卫津津.融合运动和空间关系特性的显著性区域检测[J].华中科技大学学报(自然科学版),2013,41(6):45-49. 被引量:2
  • 8Luo Y, Tian Q. Spatio-temporal enhanced sparse feature selec-tion for video saliency estimation[C]//2012 IEEE Computer So-ciety Conference on Computer Vision and Pattern RecognitionWorkshops(CVPRW). 2012:33-38.
  • 9Fang Y,Lin W, Chen Z,et al. A Video Saliency Detection Modelin Compressed Domain [J]. IEEE Transactions on Circuits andSystems for Video Technology,2014,24(1):27-38.
  • 10Hou X, Zhang L. Saliency Detection: A Spectral Residual Ap-proach[M]. MinneaPolis,MN, USA,2007.

二级参考文献25

  • 1汪国有,张磊,王晨.复杂背景下序贯显著性特征海面目标检测算法[J].华中科技大学学报(自然科学版),2006,34(10):28-30. 被引量:5
  • 2Liu Tie, Yuan Zejian, Sun Jian, et al. Learning to detect a salient object[J]. IEEE Transaction on Pat- tern Analysis and Machine Intelligence, 2011, 33 (2) : 353-367.
  • 3Fu Y, Cheng J, Li Z, et al. Saliency cuts: an auto- matic approach to object segmentation[C] // Proceed- ing of ICPR. Tampa: IEEE, 2008: 1-4.
  • 4Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Transaction on Pattern Analysis and Machine Intelli- gence, 1998, 20(11): 1254-1259.
  • 5Achanta R, Hemami S, Estrada F. Frequency-tuned salient region detection[C]//Proceeding of CVPR. Miami: IEEE, 2009: 1597-1604.
  • 6Cheng M M, Zhang G X, Mitra N J, et al. Global contrast based salient region detection[C]//Proceed- ing of CVPR. Springs: IEEE, 2011: 409-416.
  • 7Perazzi F, Krahenbuhl P, Pritch Y, et al. Saliency filters: contrast based filtering for salient region de- tection[-C-] ///Proceeding of CVPR. Rhode Island: IEEE, 2012: 933-940.
  • 8Wolfe J M. Visual attention[-M]. 2nd Edition. San Diego: Academic Press, 2000.
  • 9Achanta R, Shaji A, Smith K, et al. SLIC super- pixels, technical report 149300[-R]. Paris: EPFL, 2010.
  • 10Yubing T, Cheikh F A, Guraya, et al. A spatial- temporal saliency model for video surveillance[-J]. Cognitive Computations, 2011, 3: 241-263.

共引文献8

同被引文献27

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部