期刊文献+

基于Feeds的社交网络活跃度分析 被引量:2

OSN Activities Analysis Based on User Feeds
下载PDF
导出
摘要 从用户产生和消费Feeds的角度分析社交网络变得不活跃的原因,通过分析人人网某大学社区用户长周期的Feeds行为来探讨该社区用户活跃度的变化。通过对用户活跃性周期和Feeds时间间隔的分析,发现越来越多的用户产生Feeds的活跃度在下降,并导致其他用户接收到的信息流的流速和多样性下降。社交网络用户由于各种原因离开或变得不活跃,并通过信息流对其朋友圈形成负向反馈,这可能是社交网络变得不活跃的深层原因。模拟实验表明,30%的初始不活跃用户会使得整个社区的信息流快速下降,并导致整个社区不活跃。 This paper explored how one social network becomes inactive. We investigated the change of users' active- ness by analyzing the activeness period and Feeds inter-event time of users in a specific OSN. Our findings reveal that these users decrease their activity frequency or depart from the social network for various reasons and increase the inter- val time of Feeds, resulting in the decrease of information flow in velocity and diversity for the whole community. As a result, active users will feel the inactivity from their friends and increase the probability of being inactive as a feedback, which may be the underlying reason for the inactivity of OSN. Our simulation experiment shows that when 30% of users become inactive in generating Feeds, the whole community will be affected and collapse in a short time.
出处 《计算机科学》 CSCD 北大核心 2015年第11期149-153,163,共6页 Computer Science
基金 国家重点基础研究发展计划(2012CB315806) 国家自然科学基金(61170211 61202356 61161140454) 博士点基金(20110002110056 20130002110058) 教育部-中国移动科研基金(MCM20123041)资助
关键词 社交网络 活跃度分析 Feeds行为 时间间隔分析 OSN, Activities analysis, Feeds behaviors, Inter-event time analysis
  • 相关文献

参考文献19

  • 1Kumar S,Zafarani R,Liu H. Understanding User MigrationPatterns in Social Media[C] // Proc. of AAAI. San Francisco,USA, Aug. 2011:1204-1209.
  • 2Zhao X,Sala A, Wilson C, et al. Multi-scale dynamics in a mas-sive online social network[C] // Proc. of the 2012 ACM SIG-COMM conference on Internet measurement. Boston, USA,2012:171-184.
  • 3Gong N Z,Xu W, Huang L, et al. Evolution of social-attributenetworks; measurements, modeling, and implications usinggoogle+[Cj // Proc. of the 2012 ACM conference on Internetmeasurement. Boston, USA, Nov. 2012 : 131-144.
  • 4Leskovec J .Backstrom L.Kumar R, et al. Microscopic evolutionof social networks[C] // Proc. of the 14th ACM SIGKDD Int,lConference on Knowledge Discovery and Data Mining. Las Ve-gas, USA, Aug. 2008:462-470.
  • 5Wu S,Das Sarma A,Fabrikant A,et al. Arrival and departuredynamics in social networks[C]//Proc. of the Sixth ACM Int’lConference on Web Search and Data Mining. Rome,Italy,Feb.2013:233-243.
  • 6Dasgupta K,Singh R, Viswanathan B,et al. Social ties and theirrelevance to churn in mobile telecom networks[C] //Proc. of the11th intf 1 conference on Extending Database Technology: Ad-vances in database technology. Nantes, France, Mar. 2008:668-677.
  • 7Richter Y,Yom-Tov E,Slonim N. Predicting Customer Churn inMobile Networks through Analysis of Social Groups[C] //Proc.of SDM Columbus,USA,Apr. 2010:732-741.
  • 8Anagnostopoulos A,Kumar R,Mahdian M. Influence and corre-lation in social networks[C] //Proc. of the 14th ACM SIGKDDInt’l Conference on Knowledge Discovery and Data Mining. LasVegas,USA, Aug, 2008:7-15.
  • 9Crandall D, Cosley D,Huttenlocher D, et al. Feedback effectsbetween similarity and social influence in online communities[G]//Proc. of the 14th ACM SIGKDD Int. 1 Conference onKnowledge EHscovery and Data Mining. Las Vegas . USA, Aug.2008:160-168.
  • 10Backstrom L, Huttenlocher D,Kleinberg J,et al. Group forma-tion in large social networks:membership,growth,and evolution[C] // Proc. of the 12th ACM SIGKDD Int.l Conference onKnowledge discovery and data mining. Philadelphia,USA,Aug.2006:44-54.

同被引文献22

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部