期刊文献+

差分进化算法中参数自适应选择策略研究 被引量:1

Research on Parameter Self-selection Strategy of Differential Evolution
下载PDF
导出
摘要 参数选择本身是一个组合优化问题,尽管过去提出了很多方法,但是参数选择依然令人困惑,为此提出适用于差分进化算法的参数自适应选择策略。该策略在进化的过程中动态评估参数的性能,并根据其结果指导下一次迭代过程的参数选择。从参数库的建立、参数评分机制和参数配置机制3方面展开研究,对比实验结果表明,该方法效果良好。 The selection of the parameter itself is a combinatorial optimization problem. Although a considerable number of works have been conducted,it is known to be a puzzled task. In this paper,a DE algorithm was proposed that uses a new mechanism to parameter self-selection, which dynamically learns from their previous experiences and selects the best performing combinations of parameters for the next generation during the convergence process. We firstly designed the mechanism including three aspects:building of parameter database, score of parameter performance and selection of parameter combination, then we conducted the experiments on some benchmark functions to judge the performance. The results show that the DE with the new mechanism obtains promising performance.
出处 《计算机科学》 CSCD 北大核心 2015年第11期256-259,共4页 Computer Science
基金 国家自然科学基金(61165004 61402481) 河北省青年拔尖人才支持计划(冀字[2013]) 河北省自然科学青年基金项目(F2015403046) 河北省科技支撑计划(13210331) 河北省教育厅青年科学基金项目(QN20131053) 石家庄经济学院博士科研启动基金项目(BQ201322) 江西省教育厅青年科学基金项目(GJJ14456 GJJ14373) 江西理工大学博士科研启动基金项目(JXXJBS13028)资助
关键词 差分进化算法 参数自适应 参数选择 Differential evolution, Parameter self-adaptation, Parameter selection
  • 相关文献

参考文献15

  • 1Storn R,Price K. Differential evolution:a simple and efficient a-daptive scheme for global optimization over continuous spaces:TR-95-012[R]. ICSI,USA,1995.
  • 2汪慎文,丁立新,张文生,郭肇禄,谢承旺.差分进化算法研究进展[J].武汉大学学报(理学版),2014,60(4):283-292. 被引量:83
  • 3Liu J. A fuzzy adaptive differential evolution algorithm[J]. SoftComputing,2005,9(6) :448-462.
  • 4Zhang J, Sanderson A, JADE: adaptive differential evolutionwith optional external archive[J]. IEEE Transactions on Evolu-tionary Computation,2009,13(5) :945-958.
  • 5Brest J,Greiner S,Boskovic B, et al. Self-adapting control pa-rameters in differential evolution: A comparative study on nu-merical benchmark problems[J]. IEEE Transactions on Evolu-tionary Computation, 2006,10(6) : 646-657.
  • 6Fan L J,Lampinen J. A trigonometric mutation operator to dif-ferential evolution[J]. Journal of Global Optimization,2003,27(1):105-129.
  • 7Wang S W,Duan Y M, Shu W N. et al. Differential evolutionwith elite mutation strategy[J]. Journal of computational infor-mation systems,2013,9(3) :855-862.
  • 8Sun J, Zhang Q, Tsang E. DE/EDA: A new evolutionary algo-rithm for global optimization [J], Information Sciences, 2005,169(3):249-262.
  • 9Rahnamayan S,Tizhoosh H, Salama M. Opposition-based diffe-rential evolution[J]. IEEE Transactions on Evolutionary Com-putation ,2008,12(1):64-79.
  • 10Liu H,Cai Z, Wang Y. Hybridizing particle swarm optimizationwith differential evolution for constrained numerical and engi-neering optimization[J]. Applied Soft Computing, 2010,10(2):629-640.

二级参考文献70

  • 1辛斌,陈杰,彭志红,窦丽华.基于互补变异算子的自适应差分进化算法[J].东南大学学报(自然科学版),2009,39(S1):10-15. 被引量:4
  • 2徐志高,关正西,张炜.模糊神经网络在导弹动力系统多故障诊断中的应用[J].弹箭与制导学报,2005,25(1):15-18. 被引量:3
  • 3王凌,钱斌.混合差分进化与调度算法[M].北京:清华大学出版社,2012:33-48.
  • 4Storn R,Price K.Differential evolution:a simple and efficient adaptive scheme for global optimization over continuous spaces[R].Tech.Rep.TR-95-012,ICSI,USA,1995.
  • 5Storn R,Price K.Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces[J].Journal of global optimization,1997,11(4):341-359.
  • 6Price K,Storn R,Lampinen J.Differential Evolution:A Practical Approach to Global Optimization[M].New York:Springer-Verlag,2005.
  • 7吴志峰,差异演化算法及其应用研究[D].北京:北京交通大学,2009.
  • 8Chakraborty U.Advances in Differential Evolution[M].New York:Springer-Verlag,2008.
  • 9Qing A Y.Differential Evolution:Fundamentals and Applications in Electrical Engineering[M].Singapore:Wiley-IEEE Press,2009.
  • 10Feoktistov V.Differential Evolution:in Search of Solutions[M].New York:Springer-Verlag,2006.

共引文献82

同被引文献13

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部