期刊文献+

创造性驱动优化算法

Creativity Driven Optimization Algorithm
下载PDF
导出
摘要 模拟人类的创造性思维来求解问题一直是人工智能研究的热点和难点之一。基于当前的创造性思维研究理论,同时借鉴现有自然启发算法的建模过程,提出了一种新的智能优化算法——创造性驱动优化算法(Creativity Driven Optimization Algorithm,CDOA)。首先,构建出创造性驱动优化模型,并且为其5个子模型设计出具体的操作算子。而后,根据各子模型之间的联系,给出创造性驱动优化算法的执行步骤。为验证创造性驱动优化算法的有效性,使用8个CEC-2013实参数优化基准函数对CDOA进行了测试,并与当前最先进的3个同类算法进行对比。实验结果显示,CDOA在复杂函数上具有较好的寻优能力。最后,对CDOA进行的计算复杂度实验及分析表明,在相同实验条件下,与其他3个对比算法相比,CDOA具有更快的执行速度。 Solving problem by mimicking human's creative thinking process has been one of the hotspots in artificial in- telligence. According to the current researches about creative thinking, and also learning from the present nature-in- spired algorithms,a novel intelligent algorithm named creativity driven optimization algorithm(CDOA) was proposed. First, the creativity driven optimization model was constructed and special operators were designed for its five sub-mo- dels. Then, the execution steps of CDOA were given out. In order to test CDOA's effectiveness, eight CEC-2013 real- parameter benchmark functions were used. The optimization results of CDOA were compared with three state-of-the-art algorithms. The result shows that CDOA has an appealing optimization performance, especially on the complex composi- tion functions. At last, an experiment was carried out to analyze the computation complexity of CDOA. The results indi- cate that CDOA has lower computation complexity than the other three comparison algorithms.
作者 邹儒 冯翔
出处 《计算机科学》 CSCD 北大核心 2015年第11期260-265,共6页 Computer Science
基金 国家自然科学基金(60905043 61073107 61173048) 上海市教育委员会科研创新项目 中央高校基本科研业务费资助
关键词 创造性驱动优化算法 创造性思维 自然启发算法 函数优化 Creativity driven optimization algorithm, Creative thinking, Nature-inspired algorithm, Function optimization
  • 相关文献

参考文献18

  • 1Kephart J 0. Learning from nature [J]. Science,2011,331(6018):682-683.
  • 2陈建超,胡桂武,杜小勇.广义菌群优化算法[J].计算机科学,2013,40(3):251-254. 被引量:1
  • 3黄光球,李涛,陆秋琴.种群动力学优化算法[J].计算机科学,2013,40(11):280-286. 被引量:5
  • 4Feng X, Lau F, Yu H. A novel bio-inspired approach based onthe behavior of mosquitoes[J]. Information Sciences,2013,233:87-108.
  • 5Zhang H,Zhu Y,Chen H. Root growth model:a novel approachto numerical function optimization and simulation of plant rootsystem[J]. Soft Computing,2014,18(3) :521-537.
  • 6DeHaan R L. Teaching creative science thinking [J]. Science,2011,334(6062):1499-1500.
  • 7Chermahini S A,Hommel B. The(b) link between creativity anddopamine: spontaneous eye blink rates predict and dissociate di-vergent and convergent thinking [J]. Cognition,2010,115 (3):458-465.
  • 8Chermahini S A, Hommel B. Creative mood swings: divergentand convergent thinking affect mood in opposite ways[J]. Psy-chological Research,2012,76(5) :634-640.
  • 9Mumford M D, Medeiros K E, Partlow P J. Creative thinking:Processes, strategies.and knowledge[J]. The Journal of CreativeBehavior ,2012,46(1): 30-47.
  • 10Kounios J.Beeman M. The cognitive neuroscience of insight[J].Annual Review ofPpsychology, 2014,65 : 71-93.

二级参考文献23

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部