期刊文献+

激波冲击火焰的涡量特性研究 被引量:1

A study of vorticity characteristics of shock-flame interaction
下载PDF
导出
摘要 激波冲击火焰的现象涉及一系列复杂的物理化学过程,其中涡量的生成与演化对控制火焰发展起重要作用。为系统分析激波冲击火焰过程中的涡量特性,采用二维带化学反应的Navier-Stokes方程对平面入射激波及其反射激波与球形火焰作用的现象进行了数值研究,通过引入并行计算达到高网格分辨率的要求。计算结果表明,斜压项对火焰区内涡量生成起主导作用,压缩项和耗散项在火焰膨胀阶段抑制涡量生成,此外,火焰在激波压缩阶段主要受物理过程而非化学反应过程影响。 The phenomenon of shock wave interacting with a flame involves a series of complicated physical and chemical processes, in which the generation and evolution of vorticity play an important role in controlling flame development. To systematically analyze the vorticity characteristics in the course of shock-flame interaction, a numerical study of a planar incident shock wave and its reflected wave interaction with a spherical flame was carried out by using the two-dimensional Navier-Stokes equations coupled with chemical reaction, and the requirement of high-resolution grid was met via the parallel computation. It is found that the baroclinic term plays a dominant role in the generation of vorticity within the flame zone, and the compression and dissipation terms restrain the generation of vorticity in the flame expanding stages. Besides, in the compression stages, the evolution of flame is mainly affected by the physical--rather than chemical--process.
作者 朱跃进 董刚
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2015年第6期839-845,共7页 Explosion and Shock Waves
基金 国家自然科学基金项目(11372140 11402102) 江苏省自然科学基金青年项目(BK20140524) 江苏大学高级专业人才科研启动基金项目(14JDG031) 江苏省博士后基金项目(1402013B)
关键词 爆炸力学 涡量 NAVIER-STOKES方程 火焰 激波 斜压项 mechanics of explosion vorticity Navier-Stokes equations flame shock wave baroclinic term
  • 相关文献

参考文献18

  • 1Lindl J D, McCrory R L, Campbell E M. Progress toward ignition and burn propagation in inertial confinement fu- sion[J]. Physics Today, 1992,45(9) : 32-40.
  • 2Marble F E, Hendrick G J, Zukoski E E. Progress toward shock enhancement of supersonic combustion process ER]. AIAA, 1987:87 1880.
  • 3Oran E S, Gamezo V N. Origins of the deflagration-to-detonation transition in gas-phrase combustion[J:. Combus- tion and Flame, 2007,148(1/2) :4-47.
  • 4Markstein G H. A shock-tube study of flame front-pressure wave interaction[C]//6th Symposium (International) on Combustion. Pittsburgh, USA: The Combustion Institute, 1957:387-398.
  • 5Thomas G O, Bambrey R, Brown C. Experimental observations of flame acceleration and transition to detonation following shock-flame interaction:J]. Combustion Theory and Modeling, 2001,5(4):573-594.
  • 6Batley G A, Mcintosh A C, Brindley J, et al. A numerical study of the vorticity field generated by the baroclinic effect due to the propagation of a planar pressure wave through a cylindrical premixed laminar flame[J]. Journal of Fluid Mechanics, 1994,279 : 217-237.
  • 7Batley G A, Mcintosh A C, Brindley J. The baroclinic effect in combustionEJ]. Mathematical and Computer Mod- elling, 1996,24(8) : 165-176.
  • 8Ju Y, Shimano A, Inoue O. Vorticity generation and flame distortion induced by shock flame interaction[C]//27th Symposium (International) on Combustion. Pittsburgh, USA: The Combustion Institute, 1998:735-741.
  • 9Khokhlov A M, Oran E S, Chtchelkanova A Y, et al. Interaction of a shock with a sinusoidally perturbed flame I-J]. Combustion and Flame, 1999,117(1/2): 99-116.
  • 10Khokhlov A M, Oran E S, Thomas G O. Numerical simulation of deflagration-to-detonation transition: The role of shock-flame interactions in turbulent flame[J]. Combustion and Flame, 1999,117(3):323-339.

二级参考文献35

  • 1Maran S P, Sonneborn G, Pun C S J, et al. Physical conditions in circumstellar gas surrounding SN 1987A 12 years after outburst[J]. Astrophysical Journal, 2000,545 (1) : 390-398.
  • 2Marble F E, Hendrick G J, Zukoski E E. Progress toward shock enhancement of supersonic combustion process [R]. AIAA 87-1880, 1987.
  • 3Oran E S, Gamezo V N. Origins of the deflagration to-detonation transition in gas-phrase combustion[J]. Combus- tion and Flame, 2007,148(1/2) 14-47.
  • 4Markstein G H. A shock-tube study of flame front-pressure wave interaction[C]//6th Symposium (International) on Combustion. Pittsburgh, USA: The Combustion Institute, 1957:387-398.
  • 5Ton V T, Karagozian A R, Marble F F, et al. Numerical simulations of high speed chemically reactive flowVJ. Theoretical and Computational Fluid Dynamics, 1994,6(2/3) : 161-179.
  • 6Ju Y, Shimano A, Inoue O. Vorticity generation and flame distortion induced by shock flame interaction[C]//27th Symposium (International) on Combustion. Pittsburgh, USA The Combustion Institute, 1998 735-741.
  • 7Khokhlov A M, Oran E S, Chtchelkanova A Y, et al. Interaction of a shock with a sinusoidally perturbed flame [J]. Combustion and Flame, 1999,117(1/2) ..99-116.
  • 8Khokhlov A M, Oran E S, Thomas G O. Numerical simulation of deflagration-to-detonation transition: The role of shock-flame interactions in turbulent flame[J]. Combustion and Flame, 1999,117(1/2): 323-339.
  • 9Khokhlov A M, Oran E S. Numerical simulation of detonation initiation in a flame brush: The role of hot spots[J]. Combustion and Flame, 1999,119(4) ..400-416.
  • 10Thomas G O, Bambrey R, Brown C. Experimental observations of flame acceleration and transition to detonation following shock-flame interaction[J] . Combustion Theory and Modelling, 2001,5 (4) 573-594.

共引文献9

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部