期刊文献+

开放式多体系统动力学仿真算法软件研发(Ⅰ)DAEs求解算法构架设计 被引量:2

Study of open simulation algorithm software for multibody system dynamics(Ⅰ) algorithm framework design for solving DAEs
下载PDF
导出
摘要 基于开放式工程与科学计算集成化软件平台SiPESC,研发了用于多体系统动力学时程分析的一类通用求解算法构架。该构架的核心思想是算法与数据相分离,整个构架由五个基本类及子类组成。本文重点阐述基本类的抽象过程,利用插件技术设计求解器的构架,进一步应用该构架实现了Newmark方法,HHT(HilberHughes-Taylor)方法,Generalizedα方法,Bathe方法及祖冲之类Symplectic方法等微分-代数方程组(DAEs)求解器的开发。研究工作表明,本文所提出的DAEs求解算法构架对多体系统动力学的时程分析具有良好的开放性和通用性,可方便进行各种新的DAEs求解算法的动态扩展。 Based on the open software integration platform for engineering and scientific computation SiPESC,a new class of general algorithm framework for dynamics equations of multibody systems dynamics is constructed.The core idea of the framework is that data model class and algorithmic class are designed separately.The whole framework includes five basic classes and their subclasses.The abstract process of the basic classes is focused on,and the development process of the framework is given by employing the software plugin technology.Furthermore,Newmark,Hilber-Hughes-Taylor (HHT ), Generalized α,Bathe and Zu Chongzhi Symplectic method are implemented.This investigation shows that the framework has favorable extensibility and openness which is common to algorithm of general time-history analysis for dynamics equations of multibody systems dynamics.
出处 《计算力学学报》 CAS CSCD 北大核心 2015年第5期579-586,共8页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(11102031,11472069,11372064,11432010)资助项目
关键词 多体动力学 微分-代数方程组(DAEs) 算法构架 软件设计 dynamics of multibody systems DAEs algorithm framework software design
  • 相关文献

参考文献11

  • 1Huston R L. Multibody dynamics modeling and ana- lysis methods[J]. Applied Mechanics Reviews, 1991,44(3) : 309-117.
  • 2Hairer E,Wanner G. Solving Ordinary Differential Equations I1= Stiff and Differential-Algebraic Problems [ [M]. Springer-Verlag Berlin Heidelberg, 1996.
  • 3Baumgarte J. Stabilization of constraints and integrals of motion in dynamical systems[J]. Computer Methods in Applied Mechanical Engineering, 1972, 1 ( 1 ) .. 1-16.
  • 4Newmark N M. A method of computation for struc- tural dynamics [J]. ASCE Journal of the Engi- neering Mechanics Division, 1959,85 .. 67-94.
  • 5Negrut D,Rampalli R,Ottarsson G, et al. On an im- plementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations o[ multibody dynamics[J]. Journal of Computational and Nonlinear Dynamics, 2007,2 (1) : 73-85.
  • 6Chung J, Hulbert G. A time integration algorithm for structural dynamics with improved numerical dissipa- tion:the generalized-a method[J]. Journal of App- lied Mechanics, 1993,60(2) : 371-375.
  • 7Bathe K J. Conserving energy and momentum in non- linear dynamics., a simple implicit time integration scheme[,J]. Computers and Structures ,2007,85(7-8) 437-445.
  • 8钟万勰,高强.约束动力系统的分析结构力学积分[J].动力学与控制学报,2006,4(3):193-200. 被引量:28
  • 9张洪武,陈飙松,李云鹏,张盛,彭海军.面向集成化CAE软件开发的SiPESC研发工作进展[J].计算机辅助工程,2011,20(2):39-49. 被引量:30
  • 10张盛,杨东生,尹进,李云鹏,陈飙松,张洪武.SiPESC.FEMS的单元计算模块设计模式[J].计算机辅助工程,2011,20(3):49-54. 被引量:13

二级参考文献31

  • 1杨志军,陈塑寰,王欣.面向对象有限元快速算法——Ⅰ数据结构[J].吉林大学学报(工学版),2004,34(4):684-688. 被引量:2
  • 2钟万勰,高强.约束动力系统的分析结构力学积分[J].动力学与控制学报,2006,4(3):193-200. 被引量:28
  • 3[1]Goldstein H.Classical mechanics,2nd ed.Addison-Wesley,London,1980
  • 4[3]Hairer E,Wanner G.Solving ordinary differential equations Ⅱ-stiff and differential-algebraic problems 2nd ed.ch.7.Springer,Berlin,1996
  • 5[4]Hairer E,Lubich Ch,Wanner G.Geometric numerical integration-Structure preserving algorithms for ordinary differential equations,ch.7.Springer,Berlin,2002
  • 6[6]Zienkiewicz OC,Taylor R.The finite element method,4-th ed.McGraw-Hill,NY,1989
  • 7FORDE B W R, FOSCHI R O, STIEMER S F. Objeet-oriented finite element analysis[J]. Computers & Structures, 1990, 34(3) : 355-374.
  • 8MACKIE R I. Object-oriented progromming of the finite element method [ J]. Int J Numer Methods in Eng, 1992, 35 (2) : 425-436.
  • 9ARCHER G C, FENVES G, THEWALT C. A new object-oriented finite element analysis program architecture[ J]. Computers & Structures, 1999, 70( 1 ) : 63-75.
  • 10GAMMA E, HELM R, JOHNSON R, et al. Design patterns: elements of reusable object-oriented software[ M]. Boston: Addison-Wesley, 1994: 11-45.

共引文献65

同被引文献19

  • 1钟万勰,高强.约束动力系统的分析结构力学积分[J].动力学与控制学报,2006,4(3):193-200. 被引量:28
  • 2钟万勰,高强,彭海军.经典力学辛讲[M].大连:大连理工大学出版社,2013:202-241.
  • 3Gear C W, Petzold L R. ODE methods for the solutionof differential/algebraic systems [J]. SIAM Journalon Numerical Analysis .1984.21(4):716-72 8.
  • 4Petzold L R. Differential/algebraic equations are not〇DE,s [J]. SIAM Journal of Scientific and Statis-tical Computing . 1982 .3(2) :367-384.
  • 5Newmark N. A method of computation for structuraldynamics [ J ]. ASCE Journal of the EngineeringMechanics Division,1959,85(3) :67-94.
  • 6Hilber H M, Hughes T J R,Taylor R L. Improvednumerical dissipation for time integration algorithmsin structuraldynamics [J]. Earthquake Engineeringand Structural Dynamics .1977,5(3) :283-292.
  • 7Chung J,Hulbert G M. A time integration algorithmfor structural dynamics with improved numericaldissipation: the generalized-a method [J]. ASMEJournal of Applied Mec/iaw'cs .1993,60(2) :371-375.
  • 8Cardona A, Geradin M, Time integration of the equa-tions of motion in mechanism analysis [J]. Computersand Structures, 1989,33(3) :801-820.
  • 9Lunk C H . Simeon B. Solving constrained mechanicalsystems by the family of Newmark and a-methods[J]. Journal of Applied Mathematics and Mecha-2006,86(10) :772-784.
  • 10Bathe K J,Baig MMI. On a composite implicittimeintegration procedure for nonlinear dynamics [J],Computers and Structures, 2005,83 (31-32) : 2513-2524.

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部