期刊文献+

非线性Schrdinger方程的保辛数值求解

Numerical solution with symplectic preserving of nonlinear Schrdinger equation
下载PDF
导出
摘要 首先将非线性Schrdinger方程化为Hamilton正则方程形式,而后建立Hamilton体系下的变分原理。再用有限元法离散空间坐标,同时对时间坐标进行精细积分,最后运用混合能变分原理,提出非线性Schrdinger方程保辛数值解法。这种解法在保辛的同时,可以让能量和质量在积分格点上亦全部达到守恒。数值算例验证了该方法的有效性。 This paper proposes a new numerical method with symplectic preserving to nonlinear Schrodinger equation,and the validity of this method is proved by numerical examples.We firstly trans-form nonlinear Schr?dinger equation to Hamilton equations and therefore found Hamilton variational principle,followed with the discrete space coordinate through finite element method,precise integration algorithm used on time coordinate,and then with the mixed-energy variational principle,a numerical symplectic-preserving solution of nonlinear Schrodinger equation in the paper is well presented,while energy and mass preserving is realized simultaneously on the integration grids.Numerical examples later on demonstrate the effectiveness of this method.
出处 《计算力学学报》 CAS CSCD 北大核心 2015年第5期595-600,607,共7页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(51278298) 国家863计划(2012AA022606)资助项目
关键词 非线性 SCHRODINGER 方程 HAMILTON 体系 保辛 能量守恒 区段混合能 nonlinear Schrodinger equation Hamilton system symplectic preserving energy preserving interval mixed energy
  • 相关文献

参考文献13

  • 1Harrison W A. Applied Quantum Mechanics [M]. World Scientific, Singapore, 2000.
  • 2O'Reilly E P. Quantum Theory of Solids [M]. Tay- lor Francis,London,2002.
  • 3Gao Q, Tan S J, Zhang H W, et al. Sympleetic algo- rithms based on the principle of least action and gen- erating funetions[J]. International Journal for Nu- merical Methods in Engineering, 2012, 89 (4) ; 438- 508.
  • 4李昊辰,孙建强,骆思宇.非线性薛定谔方程的平均向量场方法[J].计算数学,2013,35(1):59-66. 被引量:8
  • 5Quispel G R W,McLaren D I. A new class of energy- preserving numerical integration methods[J]. Phys. A : Math. Theory, 2008,41:045296.
  • 6Celledoni E, McLachIan R 1, Owren B, et al. On coniu- gate B-series and their geometric structure[J]. ESC- MSC,2010,5 : 85-94.
  • 7MLachlan R I, Quispel G R W,Robidoux N. Geome- tric integration using diserete gradients [J]. Phil. Trans. R Soc A. , 1999,357 : 1021-1045.
  • 8Chattier P,Faou E, Murua A. An algebraic approach to invariant p reserving integators., the case of qua- dratic and Hamiltonian invariants [J]. Numer. Math, 2006,103 : 575-590.
  • 9高强,钟万勰.Hamilton系统的保辛-守恒积分算法[J].动力学与控制学报,2009,7(3):193-199. 被引量:14
  • 10Reza M. An exponential spline solution of nonlinear Schrtdinger equations with constant and variable coefficients[J]. Computer Physics Communications, 2014,185:917-932.

二级参考文献59

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部