摘要
用函数分解及几何双倍条件和上双倍条件方法,得到了Calderón-Zygmund算子及其与RBMO(μ)函数生成的交换子在非齐度量测度空间上Morrey空间中的有界性;并且当p=n/β时,证明了Calderón-Zygmund算子与Lipschitz函数生成的交换子是从Morrey空间到RBMO空间有界的.
With the aid of the methods of the function decompositions and the conditions of the geometrically and upper doubling,the boundedness of Calderón-Zygmund operators and its commutators generated by RBMO(μ)functions was obtained on Morrey spaces associated with nonhomogeneous metric measure spaces. Moreover,as p =n/β,it was proved that commutators generated by Calderón-Zygmund operators and Lipschitz functions are bounded from the Morrey spaces into RBMO(μ)spaces.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2015年第6期1073-1080,共8页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11161042)