期刊文献+

Z_(min)上秩-1矩阵的周长不等式及线性保持算子

Perimeter Inequality and Linear-Preserving Operators of Rank-1 Matrices over Z_(min)
下载PDF
导出
摘要 利用Boolean秩-1矩阵的周长保持性质和Boolean代数B与Zmin上矩阵之间支配关系的等价性获得了Zmin上秩-1矩阵和的周长所满足的不等式,保持其秩与周长的线性算子以及保持秩-1和周长2的性质. Based on the preserving properties of the perimeter of Boolean rank-1 matrices and the equivalence of the dominating relation between matrices over Boolean algebra B and Zmin,the inequality on the perimeter of the sum of two rank-1 matrices over Zmin and the linear operator of preserving the rank and perimeter.At last it get the properties of preserving the rank and perimeter 2of rank-1matrices over Zmin.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第6期1081-1085,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11261021) 江西省自然科学基金(批准号:20132BAB201007)
关键词 秩-1矩阵 周长 支配 模型 (U V)-算子 rank-1 matrix perimeter dominate pattern (U V)-operator
  • 相关文献

参考文献9

  • 1刘畔畔,张树功,李庆春.保线性算子q次数值域的线性映射[J].吉林大学学报(理学版),2013,51(6):979-983. 被引量:1
  • 2李栋梁,任苗苗,刘建华,李斌.半环上保持矩阵{1}-逆的线性算子[J].纯粹数学与应用数学,2013,29(2):185-189. 被引量:1
  • 3Song S Z,Park K R,Hernandez E L. Extreme Preservers of Maximal Column Rank Inequalities of MatrixMultiplications over Semirings [J]. J Korean Math Soc,2010,47(1) . 71-81.
  • 4Hwang S G,Kim S J,Song S Z. Linear Operators That Preserve Maximal Column Rank of Boolean Matrices [J].Linear and Multilinear Algebra, 1994, 36(4) : 305-313.
  • 5Beasley L B,Pullman N J. Boolean-Rank-Preserving Operators and Boolean-Rank-1 Spaces [J]. Linear AlgebraAppl, 1984, 59; 55-77.
  • 6Song S Z,Kang K T, Beasley L B. Linear Operators That Preserve Perimeters of Matrices over Semirings [J].J Korean Math Soc, 2009, 46(1) : 113-123.
  • 7Song S Z,Beasley L B,Cheon G S,et al. Rank and Perimeter Preservers of Boolean Rank-1 Matrices [J].J Korean Math Soc, 2004, 41(2) : 397-406.
  • 8张廷海,甘爱萍.Min-Algebra上矩阵的μ值[J].江西师范大学学报(自然科学版),2013,37(3):225-228. 被引量:2
  • 9Beasley L B, Guterman A E. Rank Inequalities over Semirings [J]. J Korean Math Soc, 2005,42(2) ; 223-241.

二级参考文献33

  • 1张显,曹重光.关于域上矩阵广义逆的加法映射[J].数学学报(中文版),2004,47(5):1013-1018. 被引量:7
  • 2Song S Z, Kang K T, Beasley L B. Idempotent matrix preservers over Boolean algebras[J]. J. Korean Math. Soc., 2007,44(1):169-178.
  • 3Rao P S S N V P, Rao K P S B. On generalized inverses of Boolean matrices[J]. Linear Algebra Appl., 1975,11:135-153.
  • 4Frobenius G. Uber Die Drastellung Der Endlichen Grouppen Durch Lineare Substitutionen[M]. Berlin: Sitzungsber. Preuss. Akad. Wiss., 1897.
  • 5Marcus M. Linear transformations on matrices[J]. J. Res. Nat. Bur. Standards, 1971,75B:I07-I13.
  • 6Bu C J. Invertible linear maps preserving {1}-inverses of matrices over PID[J]. J. Appl. Math. Computing, 2006,22(3):255-265.
  • 7Chan C H, Lim M H. Linear transformations on symmetric matrices that preserve commutativity[J]. Linear Algebra Appl., 1982,47:11-22.
  • 8Chan G H, Lim M H, Tan K K. Linear preservers on matrices[J]. Linear Algebra Appl., 1987,93:67-80.
  • 9Choi M D, Jafarian A A, Radjavi H. Linear maps preserving commutativity[J]. Linear Algebra Appl., 1976,87:227-241.
  • 10DolZan D, Oblak P. Idempotent matrices over antirings[J]. Linear Algebra Appl., 2009,431(5/6/7):823-832.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部