期刊文献+

一类p(t)-Laplace系统周期解的多重性 被引量:1

Multiplicity of Periodic Solutions for a Class of p(t)-Laplacian Systems
下载PDF
导出
摘要 利用变分原理研究p(t)-Laplace系统的周期解.当具有p--线性非线性项和部分周期位势时,根据极小极大方法中的广义鞍点定理,得到了系统多重周期解的存在性结果. Using variational principle,the author studied periodic solutions for p(t)-Laplacian systems with p--linear nonlinearity and partially periodic potential.Some results for the existence of multiplicity of periodic solutions of the systems were obtained via generalized saddle point theorem in the minimax methods.
作者 张申贵
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第6期1093-1098,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:31260098) 国家自然科学基金天元数学基金(批准号:11326100) 西北民族大学中央高校基本科研业务费专项基金(批准号:31920130004)
关键词 p(t)-Laplace系统 周期解 临界点 p(t)-Laplacian system periodic solution critical point
  • 相关文献

参考文献2

二级参考文献14

  • 1Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems [M] New York: Springer, 1989.
  • 2TANG Chunlei. Periodic Solutions of Non-autonomous Second Order Systems with Sub-linear Nonlinearity [J]. Proc Amer Math Soc, 1998, 126(11): 3263-3270.
  • 3WANG Zhiyong, ZHANG Jihui. Periodic Solutions of a Class of Second Order Non-autonomous Hamihonian Systems [J]. Nonlinear Anal, 2010, 72(12): 4480-4487.
  • 4Zhikov V V. On Some Variational Problems[J]. Russian J Math Phys, 1997, 5(1) : 105 116.
  • 5Ruzicka M. Electrorheologial Fluids: Modeling and Mathematial Throry [M]. Berlin: Springer, 2000.
  • 6CHEN Yunmei, Levine S, Rao M. Variable Exponent, Linear Growth Functionals in Image Restoration[J]. SIAM J Appl Math, 2006, 66(4): 1383-1406.
  • 7GE Bin, XUE Xiaoping, ZHOU Qingmei. Existence of Periodic Solutions for a Differential Inclusion Systems Involving the p(t)-Laplacian[J]. Acta Math Sci Set B: Engl Ed, 2011, 31(5): 1786 -1802.
  • 8FAN Xianling, FAN Xing. A Knobloch-Type Result for p(t) Laplacian Systems [J] J Math Anal Appl, 2003, 282(3) : 453-464.
  • 9ZHANG Liang, TANG Xianhua, CHEN Jing. Infinitely Many Periodic Solutions for Some Second-Order Differential Systems with p(t)-Laplacian [J]. Bound Value Probl, 2011, 33(2): 1- 15.
  • 10WANG Xianjun, YUAN Rong. Existence of Periodic Solutions for p(t)-Laplacian Systems[J]. Nonlinear Anal: Theory, Methods b-Applications, 2009, 70(2): 866-880.

共引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部