摘要
设(Mr,T)是一个带有光滑对合T的r维光滑闭流形,考虑当对合的不动点集为有限个奇数维复射影空间的并,即F=∪i=1t∪j=1miCPj(ni())(ni为奇数)时对合的协边分类.通过构造合适的对称多项式和计算示性数,证明了每个以F为不动点集的对合(Mr,T)协边.
Let(Mr,T)be a smooth closed manifold of dimension r with a smooth involution T,on the basis of which we investigated the bordism classes of the involutions of a disjoint union of fixed point set with odd-dimensional complex projective spaces,i.e.,F = ∪i=1t∪j=1miCPj(ni())(niis odd).Constructing symmetric polynomial and computing characteristic number,we proved every involution(Mr,T)of fixed Fbounds.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2015年第6期1201-1206,共6页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11371118
11201314)
高等学校博士学科点专项科研基金(批准号:20121303110004)
河北科技大学博士科研启动基金(批准号:QD201021)
关键词
对合
不动点集
示性类
协边
involution
fixed point set
characteristic class
bordism