期刊文献+

不动点集为有限个奇数维复射影空间并的对合 被引量:2

Involutions of the Disjoint Union of Fixed Point Set with Odd-Dimensional Complex Projective Spaces
下载PDF
导出
摘要 设(Mr,T)是一个带有光滑对合T的r维光滑闭流形,考虑当对合的不动点集为有限个奇数维复射影空间的并,即F=∪i=1t∪j=1miCPj(ni())(ni为奇数)时对合的协边分类.通过构造合适的对称多项式和计算示性数,证明了每个以F为不动点集的对合(Mr,T)协边. Let(Mr,T)be a smooth closed manifold of dimension r with a smooth involution T,on the basis of which we investigated the bordism classes of the involutions of a disjoint union of fixed point set with odd-dimensional complex projective spaces,i.e.,F = ∪i=1t∪j=1miCPj(ni())(niis odd).Constructing symmetric polynomial and computing characteristic number,we proved every involution(Mr,T)of fixed Fbounds.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第6期1201-1206,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11371118 11201314) 高等学校博士学科点专项科研基金(批准号:20121303110004) 河北科技大学博士科研启动基金(批准号:QD201021)
关键词 对合 不动点集 示性类 协边 involution fixed point set characteristic class bordism
  • 相关文献

参考文献12

  • 1Royster D C. Involutions Fixing the Disjoint Union of Two Projective Spaces [J], Indiana Univ Math J,1980.29(2) : 267-276.
  • 2吴振德,刘宗泽.不动点集为i.P(2m)的带有对合的流形[J].数学季刊,1986(2): 19-41.
  • 3Oliveira R,de, Pergher P L Q, Ramos A. Z2-Actions Fixing RP2 U J.Peven [J], Algebr Geom Topol, 2007,7(1): 29-45.
  • 4Pergher P L Q,Ramos A. Z*-Actions Fixing KdP2S IJKdPeven [J]. Topology Appl,2009,156(3) : 629-642.
  • 5Torrence B F. Bordism Classes of Vector Bundles over Real Projective Spaces [J], Proc Amer Math Soc, 1993 ,118(3): 963-969.
  • 6赵素倩,王荣欣,刘金宪.不动点集为 "非汉字符号"CP_i(2n+1)的带有对合的光滑流形[J].河北师范大学学报(自然科学版),2005,29(2):113-115. 被引量:2
  • 7HOU Duo,Torrence B F. Involutions Fixing the Disjoint Union of Odd-Dimensional Projective Spaces [J]. CanadMath Bull, 1994, 37(1): 66-74.
  • 8LI Jingyan, WANG Yanying. Characteristic Classes of Vector Bundles over RP (h) X HP (k) [J]. TopologyAppl, 2007,154(8) : 1778-1793.
  • 9赵素倩,王彦英,李京艳.不动点集为Ui=1^m RPi(3)×HPi(k)的对合[J].数学学报(中文版),2009,52(6):1119-1134. 被引量:3
  • 10ZHAO Suqian, WANG Yanying. Involutions Fixing U CP, (1〉X HP; (n) [J]. Acta Math Sci: Ser B,2012,32(3) : 1021-1034.

二级参考文献2

共引文献2

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部