期刊文献+

多分类概率极限学习机及其在剩余使用寿命预测中的应用 被引量:5

Multi-class probabilistic extreme learning machine and its application in remaining useful life prediction
下载PDF
导出
摘要 针对多分类极限学习机(extreme learning machine,ELM)缺乏概率输出能力问题,提出一种基于sigmoid后验概率映射和Lagrange成对耦合法的多分类概率ELM(multi-class probabilistic ELM,MPELM)。采用成对耦合法将多分类问题分解成多个二分类问题,利用sigmoid函数将二分类ELM输出映射成概率输出。为融合所有二分类概率输出,推导基于Lagrange乘子法的多分类概率计算公式,最终求解被预测样本分属不同类别的概率。将MPELM用于剩余使用寿命(remaining useful life,RUL)预测,实验结果表明,相比于多分类概率支持向量机(multi-class probabilistic support vector machine,MPSVM),MPELM耗时高于MPSVM,但MPELM所需优化参数少,预测精度高于MPSVM;与基于Hastie成对耦合法的MPELM相比,两者预测精度相近,本文MPELM的测试耗时较少。 To solve the problem that multi-class extreme learning machine (ELM) lacks the ability of prob- abilistic output, a multi-class probabilistic ELM (MPELM) algorithm is presented based on the combination of sigmoid posterior probability mapping and Lagrange pairwise coupling. Firstly, after separating the multi-class problem into the type of two-class problem by pairwise coupling, each two-class ELM output is transformed to the probabilistic output by sigmoid function. Then, the multi-class probabilistic computing expression is de- duced based on the Lagrange multiplier method, which is utilized to fuse all two-class probabilistic outputs. Fi- nally, the probabilistic results of predicted samples belonging to different classes are obtained. The proposed MPELM is applied to remaining useful life (RUL) prognosis. The experiment results show that, compared with multi-class probabilistic support vector machine (MPSVM), though time consuming of the proposed MPELM is higher than MPSVM, less optimized parameter is required while higher forecasting accuracy is achieved by MPELM. The predicting accuracy of the proposed MPELM is similar to MPELM based on the Hastie pairwise coupling (Hastie- MPELM) algorithm. But test time consuming of the proposed MPELM is less than Hastie-MPELM.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第12期2777-2784,共8页 Systems Engineering and Electronics
基金 总装院校科技创新工程项目(ZYX12080008)资助课题
关键词 极限学习机 后验概率 成对耦合法 故障预测 extreme learning machine (ELM) posterior probability pairwise coupling fault prediction
  • 相关文献

参考文献18

  • 1Banjevic D. Remaining useful life in theory and practice[J]. Metrika, 2009, 69(2) : 337- 349.
  • 2Kamal M, Diego A, Tobon M, et al. Remaining useful life esti- mation of critical components with application tobearings[J]. IEEE Trans. on Reliability, 2012, 61(2) : 292 - 302.
  • 3Miao Q, Xie L, Cui H G, et al. Remaining useful life prediction of lithiumion battery with unseented particle filter techniqueEJ]. Mi croelectronics Reliability, 2013, 53(6) : 805 - 810.
  • 4Hu C, Jain G, Gorka T. Method for estimating capacity and predicting remaining useful life of lithiumion batteryEJJ. Ap- plied Energy, 2014, 126(1) : 182 - 189.
  • 5Benkedjouh T, Medjaher K, Zerhouni N, et al. Remaining use- ful life estimation based on nonlinear feature reduction and sup-port vector regression[J]. Engineering Applications of Artifi- cial Intelligence, 2013, Z6(7): 1751- 1760.
  • 6Liu J B, Djurdjanovie D, Ni J, et al. Similarity based method for manufacturing process performance prediction and diagnosis[J]. Computers in Industry, 2007, 58(6): 558- 566.
  • 7K~m H E, Tan A C C, Mathew J, et al. Bearing fault prognosis based on health state probability estimation[J]. Expert Systems with Applications, 2012, 39(5) : 5200 - 5213.
  • 8Huang G B, Zhu Q Y, Slew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70 (]/3) : 489 -501.
  • 9Kamran J, Rafael G, Noureddine Z. SW-ELM: a summation wave- let extreme learning machine algorithm with a priori parameter ini- tializationl[J]. Neurocomputing, 2014, 123(1) : 299 - 307.
  • 10Yuan X, Chen Y J, Zhu Q X. An extension sample classifica- tion-hased extreme learning machine ensemble method for process fault diagnosis[J]. Chemical Engineering ~y- Technolo- gy, 2014, 37(6): 911-918.

二级参考文献22

  • 1柳新民,刘冠军,邱静,胡茑庆.基于1-DISVM的聚类模型及直升机齿轮箱故障诊断应用[J].航空学报,2006,27(3):453-458. 被引量:6
  • 2Gustavsen B, Semlyen A. Rational Approximation of Frequency Domain Responses by Vector Fitting[ J]. IEEE Trans on Power Delivery, 1999, 14(3): 1052-1061.
  • 3Deschrijver D, Mrozowski M, Dhaene T, et al. Macromodeling of Multiport Systems Using a Fast Implementation of the Vector Fitting Method[ J]. IEEE Microwave Wireless Components Letters, 2008, 18(6): 383-385.
  • 4Ramirez A. Vector Fitting-Based Calculation of Frequency-Dependent Network Equivalents by Frequency Partitioning and Model- Order Reduction[J]. IEEE Trans on Power Delivery, 2009, 24(1): 410-415.
  • 5Saraswat D, Achar R, Nakhla M. Global Passivity Enforcement Algorithm for Macromodels of Interconnect Subnetworks Characterized by Tabulated Data[ J]. IEEE Trans on VLSI Systems, 2005, 13(7): 819-832.
  • 6Triverio P, Grivet-Talocia S, Nakhla M. Stability, Causality, and Passivity in Electrical interconnect models[ J]. IEEE Trans on Advanced Packaging, 2007, 3(4): 795-808.
  • 7Coelho C P, Phillips J, Silveira L M. A Convex Programming Approach for Generating Guaranteed Passive Approximations to Tabulated Frequency-Data[ J]. IEEE Trans on Computer-Aided Design of Integrated Circuits and System, 2004, 23 (2): 293-301.
  • 8Gustavsen B, Semlyen A. Enforcing Passivity for Admittance Matrices Approximated by Rational Functions[ J]. IEEE Trans on Power Systems, 2001, 16, (2) : 97-104.
  • 9Gustavsen B. Computer Code for Passivity Enforcement of Rational Macromodels by Residue Perturbation[ J]. IEEE Trans on Advanced Packaging, 2007, 23(4): 2278-2285.
  • 10Grivet-Talocia S. Passivity Enforcement via Perturbation of Hamiltonian Matrices[ J]. IEEE Trans on Circuits and Systems-I: Regular Paper, 2004, 51(9) : 1755-1769.

共引文献6

同被引文献81

引证文献5

二级引证文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部