期刊文献+

基于边缘敏感递归滤波的彩色航拍图像云检测 被引量:3

Cloud detection of color aerial images by edge-aware recursive filtering
下载PDF
导出
摘要 为了有效检测出彩色航拍图像中的云区,提出一种基于边缘敏感递归滤波的彩色航拍图像云检测方法。通过基于自适应引导权的边缘敏感递归滤波算子构造航拍图像的差异映射,并结合基于类内方差的递归阈值选择方法,将输入的航拍图像区分为待定云区和非云区。利用边缘敏感递归滤波算子对原始航拍图像累进滤波,有效抽取分层的图像细节,构造航拍图像的细节映射以精化待定云区。利用客观性能指标对检测结果进行评价。实验结果表明,相较于其他相关研究工作,提出的方法有效易行,计算复杂度低。 In order to detect cloud areas of color aerial images effectively, a cloud detection method of color aerial images by edge-aware recursive filtering is proposed. The variation mapping is constructed using adaptive guided weight based edge-aware recursive filtering. Based on the variation mapping, the input aerial image is di- vided into pending cloud areas and non-cloud areas by intra-class variance based recursive threshold selection. The original aerial image is progressively filtered using the edge-aware recursive filtering and the hierarchical de- tails are effectively extracted. The detail mapping of the aerial image is constructed and used to refine the pend- ing cloud areas. The performance of the detection results is evaluated by the objective indicator. The experimen- tal results show that the proposed method is effective, easy, and of lower computational complexity compared with other similar methods.
作者 廖斌 付忠旺
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第12期2879-2886,共8页 Systems Engineering and Electronics
基金 国家自然科学基金(61300125)资助课题
关键词 图像处理 图像分类 云检测 彩色航拍图像 边缘敏感递归滤波 image process image classification cloud detection color aerial images edge-aware reeursive filtering
  • 相关文献

参考文献18

  • 1Kang X, i.i S, t~nediktsson J A. Sl.~ectral-spatial hyperspectral image classification with ~xtge preserving filtering[J]. IEEE Thins. on Geosci eme and Remote S,,nsin.~' ,2014, 52(5) ~ 2666 - 2677.
  • 2Frey R A, Ackerman S A, I.iu Y, et al. Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5[J]. Journal of Atmospheric and Oceanic Technolo gy,2008,25(7).. 1057 - 1072.
  • 3Zhang Q, Xiao C X. Cloud detection of RGB color aerial photo graphs by progressive refinement scheme[J]. IEEE Trans. on Gonscience and Remote Sensing, 2014, 52(11) ~ 7264 - 7275.
  • 4Farbman Z, Fattal R, Lisehinski D, et al. Edge-preserving de compositions for multi-scale tone and detail manipulation[J]. ACM Trans. on Graphics ,2008,27(3) : 67 - 76.
  • 5Paris S, Durand F. A fast approximation of the bilateral filter u- sing a signal processing approach[C]//Proc, of' the European Conference on Computer Vision ,2006 : 568 - 580.
  • 6Yang Q, Dm K H, Ahuja N. Real time O bilateral filtering[C]// Proc. of the IEEE n.'rence on Gomputer Vision and PatterT Recog niti~m ,2009:557 - 564.
  • 7Comaniciu D, Meer P. Mean shift: a robust a.Gproach toward feature space analysis[J]. IEEE Trans. on Pattern Analysis and Machine Inlelligence ,2002,24(5) ~ 603 - 619.
  • 8Felzenszwalb P F, Huttenlocher D P. Efficient graph-based ira age segmentation[J]. International Journal of Computer Vi- sion,2004, 59(2): 167-181.
  • 9Lin W T, I.in C H, Wu T H, et al. Image segmentation using the k- means algorithm for texture features[J]. World Academy oj" Sci ence , Engineering and Technology ,2010, 65(4): 612- 615.
  • 10Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary ~. region segmentation of objects in NI) images[C]// Proe. of the International Conference on Computer Vision, 2001:105 - 112.

同被引文献15

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部