期刊文献+

基于气体捕捉法的泡沫Ti-6Al-4V等温发泡规律研究 被引量:1

Study on the law of isothermal foaming of Ti-6Al-4V foams fabricated by gas entrapment
下载PDF
导出
摘要 为了确定气体捕捉法制备泡沫Ti-6Al-4V等温发泡过程中孔隙率和微观孔洞的变化规律,在不同发泡温度及发泡时间下制备了泡沫Ti-6Al-4V.运用阿基米德原理对泡沫Ti-6Al-4V的孔隙率进行测量,通过OM和SEM对其微观特征进行观察.研究表明:泡沫Ti-6Al-4V的孔隙率及孔径均随等温发泡温度升高而增加;但当发泡温度大于950℃时,孔隙率和孔径均减小,且孔洞形态由球形变成多边形,这是由于基体内生成大尺寸β相造成的.增加发泡时间能以促进孔洞长大的方式提高泡沫Ti-6Al-4V的孔隙率,球形孔洞数量随着发泡时间的增加逐渐增多.经950℃/10 h发泡得到了孔隙率34.2%、孔径平均值156μm、孔洞为球形且分布弥散的泡沫Ti-6Al-4V. In order to determine the density of porosity and characterize the microstructure of pores in Ti-6Al-4V foams fabricated by gas entrapment method, different combination of isothermal foaming temperature and time of the process were studied. The density of porosity in Ti-6Al-4V foams was calculated through Archimedes method. The microscopic characteristics of the interior of Ti-6Al-4V foams were observed by using optical microscopy( OM) and scanning electron microscopy( SEM). The results showed that the density of porosity and pore size increased with isothermal foaming temperature. But the porosity and pore size decreased and the pore morphology changed from spherical to a polygon shape,when the isothermal foaming temperature was above 950 ℃. This is believed to be attributed to the generation of large sized βphase. By adding isothermal foaming time,the population of porosity and spherical pores in Ti-6Al-4V foams can be increased in the same time. Ti-6Al-4V foams containing up to porosity of 34. 2% in the average pore size of 156 μm were successfully produced by gas entrapment at 950 ℃ isothermal foaming for 10 hours,while the pore morphology is sphere and pore is dispersed evenly.
出处 《材料科学与工艺》 EI CAS CSCD 北大核心 2015年第4期1-6,共6页 Materials Science and Technology
关键词 泡沫钛 等温发泡 气体捕捉法 TI-6AL-4V合金 粉末冶金 titanium foams isothermal foaming gas entrapment Ti-6Al-4V alloy powder metallurgy
  • 相关文献

参考文献15

  • 1ASHBYMF,EVANSAG,FLECKNA,etal.泡沫金属设计指南[M].刘培生,王习述,李言祥,译.北京:冶金工业出版社,2006:1-17.
  • 2胡曰博,张新娜,孙文兴,蒋丽.泡沫钛材料的制备与应用研究进展[J].稀有金属材料与工程,2009,38(A03):297-301. 被引量:10
  • 3白珍辉,尉海军,蒋利军,朱磊,简旭宇,王忠.泡沫钛材料国内外研究现状及展望[J].金属功能材料,2009,16(3):62-66. 被引量:8
  • 4SMORYG O, MARUKOVICH A, MIKUTSKI V, et al. High-porosity titanium foams by powder coated space holder compaction method [ J ]. Materials Letters, 2012, 83: 17-19.
  • 5ANDERSEN O, WAAG U, SCHNEIDER L, et al. Novel metallic hollow sphere structures [ J ]. Advanced Engineering Materials, 2000 , 2 (4) : 192-195.
  • 6KEARNS M W. Formation of porous bodies [ P ]. U.S. Patent :U.S. 4659546 , 1987-04-21.
  • 7MARTIN R L. Integral porous-core metal bodies and in situ method of manufacture thereof[ P ] . U.S. Patent : U.S. 5564064,1996-10-08.
  • 8OPPENHEIMER S, DUNAND D C. Solid-state foaming of Ti-6A1-4V by creep or superplastic expansion of argon-filled pores [ J]. Acta Materialia , 2010, 58: 4387-4397.
  • 9MURRARY N G D, DUNAND D C. Effect of thermal history on the superplastic expansion of argon-filledpores in titanium: Part I kinetics and microstructure [J]. Acta Materialia , 2004, 52: 2269-2278.
  • 10MURRARY N G D, DUNAND D C. Effect of thermal history on the superplastic expansion of argon-filled pores in titanium: Part II modeling of kinetics [ J ]. Acta Materialia , 2004, 52: 2279-2291.

二级参考文献36

共引文献14

同被引文献11

  • 1Ashby M F,Evans A G,Fleck N A.泡沫金属设计指南[M].刘培生,王习述,李言祥,译.北京:冶金工业出版社,2006:157-162.
  • 2Hideo N. Fabrication, properties and application of porous metals with directional pores[J]. Prog Mater SCi, 2007,52 (7): 1091.
  • 3Oh I H, Nomura N, Masahashi N, et al. Mechanical properties of porous titanium compacts prepared by powder sintering[J]. Scr Ma- ter, 2003,49 : 197.
  • 4Smoryg O, Marukovich A, Mikutski V, et aL High-porosity tita- nium foams by powder coated space holder compaction method[J]. Mater Lett, 2012,83 : 17.
  • 5Mohamed S A. Effect of pore size on the tensile behavior of open-cell Ti foams: Experimental results[J]. Mater Lett, 2010,64(8) : 935.
  • 6Martin R L. Integral porous-core metal bodies and in situ method of manufacture thereof: US 5564064[P]. 1996-10-08.
  • 7Queheillalt D T, Choi B W, Wadley H N G. In-tim sensing of the expansion of low density core(LDC) Ti-6AI-4V sandwich structures [J]. Mater Res Soc,1998,521:243.
  • 8Queheillalt D T, Choi B W, Schwartz D S, et al. Creep expansion of porous Ti-6AI-4V sandwich structures[J]. Metall Mater Trans A, 2000,31A:261.
  • 9Queheillalt D T, Gable K A, Wadley H N G. Temperature depen- dent creep expansion of Ti-6A1-4V low density core sandwich struc- tures [J]. Scr Mater, 2001,44: 409.
  • 10Ravi V, Queheillalt D T, Dana M E, et al. Simulation of the creep expansion of porous sandwich structures[J]. Metall Mater Trans A, 2001,32 : 1813.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部