期刊文献+

金属掺杂对碳纳米纤维结构及导电性能的研究 被引量:2

Study on the Effects of Metal-doping on the Structure and Conductivity of Carbon Nanofibers
下载PDF
导出
摘要 以DMF为溶剂,利用静电纺丝法制备了PAN/Ni(OAc)_2、PAN/Co(OAc)_2和PAN/Cu(OAc)_2复合纳米纤维,在250℃对复合纳米纤维进行预氧化处理,然后在800℃下进行碳化处理得到碳基复合纳米纤维。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电镜(TEM)和比表面与孔径分析仪(ASAP 2020)等对复合纳米纤维表面形貌和结构进行了表征,用四探针测试仪测试碳基复合纳米纤维的电导率。研究结果表明:高温处理后C/Co、C/Ni和C/Cu复合纳米纤维的直径比前驱体复合纳米纤维有所下降,部分纤维发生断裂,金属Co、Ni和Cu较均匀地分散在碳纤维内部。碳基复合纤维的比表面积和孔体积大大增加,分别为597m^2·g^(-1)和0.297cm^3·g^(-1),C/Cu复合纳米纤维的导电率最高可达8.75S/m。 PAN/Ni(OAc)2, PAN/Co(OAc)2 and PAN/Cu(OAc)2 nanocomposites were prepared by electrospinning and porous carbon/cobalt (C/Co), carbon/nickel (C/Ni) and carbon/copper (C/Cu) nanocomposites were obtained both by electrospinning and subsequent carbonization processes at 800 ℃ in N2 atmosphere. XRD, SEM, TEM, ASAP 2020 and four-point probe method were used to characterize the surface morphology, the phase composition and specific surface area of the nanofibers. The result showed that the diameter of the fibers became fine and some of the fibers were broken after sintering, and the particles of Co, Ni and Cu relatively evenly dispersed in the carbon nanofibers. The specific surface area and pore volume increased greatly of the metal-doped carbon nanocomposites. The surface area and pore volume for the porous C/Cu was 597 m2 · g^-1 and 0. 297 cm^3 · g^-1, respectively, which also had the highest conductivity of 8. 75 S/re.
出处 《材料导报》 EI CAS CSCD 北大核心 2015年第22期87-90,104,共5页 Materials Reports
基金 国家自然科学基金青年基金(11305138 A020602) 江苏省高校自然科学基金面上项目(15KJB430032) 盐城市农业科技指导性计划项目(YKN2014017)
关键词 静电纺丝 金属掺杂 碳纳米纤维 比表面积 电导率 eleotrospinning, metal-doping, carbon nanofiber, specific surface area, conductivity
  • 相关文献

参考文献14

  • 1Yu D S. Nagelli E. Du F, et al. Metal-free carbon nanomaterials become more active than metal catalysts and last longer[J]. J Phys Chern Lett, 2010, 1 (14) : 2165.
  • 2Zhang G Q, Zheng J r. Liang R, et al. Alpha-MnOz/carbon canotube/ carbon nanofiber composite catalytic air electrodes for rechargeable lithium-air batteries [J]. J Electrochern Soc.2011.158(7):A822.
  • 3Niu H T, Zhang J, Xie Z L, et al. Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials[J]. Carbon, 2011,49(7): 2380.
  • 4Chen J Z.Li Bv Zheng J F, et al. Polyaniline nanofiber/carbon film as flexible counter electrodes in platinum-free dye- sensitized solar cells[J]. Electrochim Acta, 2011,56 (12): 4624.
  • 5Ji L W, Zhang X W. Manganese oxide nanoparticle-Ioaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries [J]. Electrochem Comrnun , 2009,11(4): 795.
  • 6Park S H, Lee W F. Hierarchically mesoporous flower-like cobalt oxide/carbon nanofiber composites with shell-core structure as anodes for lithium ion batteries [J]. Carbon, 2015,89:197.
  • 7Huang X. Zeng Z, Fan Z. et al. Graphene-based electrodes [J] Adv Mater,2012,24(45) :5979.
  • 8Kim S Y, Kim B H, Yang K S, et al. Supercapacitive properties of porous carbon nanofibers via the electrospinning of metal alkoxide-graphene in polyacrylonitrile[J]. Mater Lett. 2012,87:157.
  • 9Ma C, Song Y, Shi J, et al. Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor e1ectrodes[J]. Carbon, 2013. 51(1): 290.
  • 10Hou Y, Chen L, Zhang L, et al. Ultrahigh capacitance of nanoporous metal enhanced conductive polymer pseudocapacitors[J]. J Power Sources,2013, 225: 304.

同被引文献44

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部