期刊文献+

基于用户阅读时间-频次行为的书籍推荐方法 被引量:6

Recommending Books Based on Reading Time and Frequency
下载PDF
导出
摘要 随着电子阅读在近年来的兴起,通过研究用户对电子书籍的喜好,利用协同过滤推荐算法向用户进行个性化的书籍推荐具有实际应用价值,也成为了推荐系统研究中的重要内容。但当前很多书籍推荐应用中都存在缺少用户评分数据甚至没有用户评分的情况,使得传统协同过滤推荐方法的应用受阻。为解决此问题,通过分析处理用户阅读数据的相关行为数据,将此类行为数据通过时间-频次模型建模并得到用户-书籍评分矩阵,并利用该评分进一步实现基于用户的协同过滤书籍推荐算法。实验结果表明,改进的书籍协同过滤推荐算法的时间-频次模型能够提高书籍的推荐效果,具有实践研究意义。 With the rise of electronic reading in recent years,the use of collaborative filtering(CF) recommendation algorithm to recommend user personalized books has practical application value, and has become the important research content in the study of recommender systems. But many current e-reading systems for book recommendations lack of users' rating data,which hinders the application of CF. To address this,we analyzed the massive users' reading beha- vior,and proposed a reading time-frequency(T-F) model to profile the users' interests to the book. Thus, the implicit ratings matrix can be derived from this model and then classical CF algorithm could be used in a natural way. The experimental results show that the user based CF with our proposed T-F rating model can improve the recommendation effectiveness,which is feasible for real scenarios.
出处 《计算机科学》 CSCD 北大核心 2015年第B11期36-41,54,共7页 Computer Science
基金 国家自然科学基金(61173097) 浙江省重大科技专项重大工业项目(2013C01112) 杭州市重大科技创新专项(20132011A16)资助
关键词 协同过滤 推荐系统 用户评分矩阵 用户行为 时间-频次 Collaborative filtering, Recommendation system, User ratings matrix, User behavior, Timefrequency
  • 相关文献

参考文献17

  • 1荣辉桂,火生旭,胡春华,莫进侠.基于用户相似度的协同过滤推荐算法[J].通信学报,2014,35(2):16-24. 被引量:149
  • 2Yin Pei-feng, Luo Ping, Wang C-L, et al. Silence is Also Evi- dence: Interpreting Dwell Time :[or Recommendation from Psy- chological Perspective[C] // the 19th ACM SIGKDD Interna- tional Conference on Knowledge Discovery and Data Mining (KDD), 2013. Chicago: ACM Press, 2013 : 989 997.
  • 3李建廷,郭晔,汤志军.基于用户浏览行为分析的用户兴趣度计算[J].计算机工程与设计,2012,33(3):968-972. 被引量:27
  • 4Ricei F, Rokaeh L, Shapira B. Recommender Systems Handbook [M]. New York: Springer, 2010.
  • 5Yi Xing, Hong Liang-jie, Zhong Er heng, et al. Beyond Clicks: Iell Time for Personalization C2//8th ACM Recommender Systems Conference, 2014. Foster City ACM Press, 2014: 113 120.
  • 6Gong Song-jie. A Collaborative Filtering Recommendation Algo rithm Based on User Clustering and Item Ciustering[J]. Journal of Software,2010,5(7) : 745-752.
  • 7Gong Song-jie,Cheng Guang-hua. Mining User Interest Change for Improving Collaborative Filtering [C]//2nd International Symposium on Intelligent Information Technology Application,2008. Shanghai: IEEE, 2008 : 24-27.
  • 8Yu Li, Liu Lu, Li Xue-feng. A Hybrid Collaborative Filtering Method for Multiple-interests and Multiple-content recommen dation in E-Commerce[J]. Expert Systems with Applications, 2005,28:67-77.
  • 9Billsus D, Pazzani M J. Learning Collaborative Information Fil- ters[C]// 15th International Conference on Machine Learning, 1998.
  • 10Madison: ICML, 1998 : 46-54 Funk S. Netflix Update: Try This at Home [EB/OL]. http:// sifter, org/sirnon/journal/20061211, html. 2006 December.

二级参考文献60

共引文献343

同被引文献64

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部