期刊文献+

基于相对密度的不确定数据聚类算法 被引量:9

Relative Density-based Clustering Algorithm over Uncertain Data
下载PDF
导出
摘要 传统的基于相对密度的聚类算法有效地解决了密度聚类算法对参数敏感以及不能区分不同密度等级簇的问题。基于相对密度的不确定聚类算法,借用了相对密度算法的思想,根据不确定数据的特征,定义了不确定数据的距离公式、相对密度、核心点、密度可达等相关概念,从而提出了一种能够有效地处理不确定数据的新算法。数据仿真结果表明了该算法的有效性和可用性。 Traditional relative density-based clustering algorithm has advantage in handling shortcomings of user-defined parameters' sensitivity and distinguishing different hierarchy of density. This paper provided a new uncertain data clustering algorithm based on relative density, which defines distance formula, density ratio, core points and densityreachable,and can efficiently handle uncertain data. The simulation results illustrate the validity and availability of the algorithm.
出处 《计算机科学》 CSCD 北大核心 2015年第B11期72-74,88,共4页 Computer Science
基金 水利部公益性行业科研专项(201401044)资助
关键词 不确定数据 相对密度 聚类 Uncertain data, Relative density, Clustering
  • 相关文献

参考文献9

  • 1MacQueen J. Some methods for classification and analysis of multivariate observations[J]. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967, 1 (14) :281-297.
  • 2Kriegel H P, Pfeifle M. Density-based clustering of uncertain da- ta[C] // Proceedings of the eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. ACM, 2005:672-677.
  • 3Ester M,Kriegel H P,Sander J,et al. A density-based algorithm for discovering clusters in large spatial databases with noise[J]. Kdd, 1996,96(34) : 226-231.
  • 4Cormode G,McGregor A. Approximation algorithms for cluste- ring uncertain data [C] // Proceedings of the Twenty-seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles ofDatabase Systems. ACM, 2008 : 191-200.
  • 5Kanagal B, Deshpande A. Online filtering, smoothing and proba bilistic modeling of streaming data[C]//IEEE 24th International Conference on Data Engineering, 2008 (ICDE 2008). IEEE, 2008:1160 1169.
  • 6R C,Letchner J, Balazinksa M, et al. Event queries on correla- ted probabilistic streams [C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. ACM, 2008 : 715-728.
  • 7Liu Q B, Deng S, Lu C H, et al. Relative density based k-nearest neighbors clustering algorithm[C]//2003 International Confe- rence on Machine Learning and Cybernetics. IEEE, 2003.
  • 8张晨,金澈清,周傲英.一种不确定数据流聚类算法[J].软件学报,2010,21(9):2173-2182. 被引量:33
  • 9Chau M, Cheng R, Kao B, et al. Uncertain data mining: An exam- ple in clustering location data [M]//Advances in Knowledge Discovery and Data Mining. Springer Berlin Heidelberg, 2006: 199-204.

二级参考文献19

  • 1Babcock B,Babu S,Datar M,Motwani R,Widom J.Models and issues data stream systems.In:Proc.of the 21st ACM SIGACT-SIGMOD-SIGART Symp.on Principles of Database Systems.Madison:ACM,2002.1-16.
  • 2Aggarwal CC,Han JW,Yu PS.A framework for clustering evolving data streams.In:Proc.of the 29th Int'l Conf.on Very Large Data Bases.Berlin:Morgan Kaufmann Publishers,2003.81-92.
  • 3Aggarwal CC,Yu PS.A framework for clustering uncertain data streams.In:Proc.of the 24th Int'l Conf.on Data Engineering.Cancún:IEEE,2008.150-159.
  • 4Callaghan LO,Mishra N,Meyerson A,Guha S,Motwani R.Streaming-Data algorithms for high-quality clustering.In:Proc.of the 18th Int'l Conf.on Data Engineering.San Jose:IEEE,2002.685-694.
  • 5Zhu WH,Yin J,Xie YH.Arbitrary shape cluster algorithm for clustering data stream.Journal of Software,2006,17(3):379-387 (in Chinese with English abstract).http://www.jos.org.cn/1000-9825/17/379.htm[doi:10.1360/jos170379].
  • 6Datar M,Gionis A,Indyk P,Motwani R.Maintaining stream statistics over sliding windows.In:Proc.of the 13th Annual ACM-SIAM Symp.on Discrete Algorithms.San Francisco:ACM,2002.635-644.
  • 7Babcock B,Datar M,Motwani R,Callaghan LO.Maintaining variance and k-medians over data stream windows.In:Proc.of the 22nd ACM SIGACT-SIGMOD-SIGART Symp.on Principles of Database Systems.San Diego:ACM,2003.234-243.
  • 8Cao F,Estery M,Qian WN,Zhou AY.Density-Based clustering over an evolving data stream with noise.In:Proc.of the 6th SIAM Int'l Conf.on Data Mining.Bethesda:SIAM,2006.326-337.
  • 9Kriegel HP,Pfeifle M.Density-Based clustering of uncertain data.In:Proc.of the 11th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.Chicago:ACM,2005.672-677.
  • 10Kriegel HP,Pfeifle M.Hierarchical density-based clustering of uncertain data.In:Proc.of the 5th IEEE Int'l Conf.on Data Mining.Houston:IEEE Computer Society,2005.689-692.

共引文献32

同被引文献57

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部