期刊文献+

PTZ摄像机跟踪运动目标的智能控制算法的研究 被引量:7

Research on Intelligent Control Method for Moving Object Tracking Based on PTZ Camera
下载PDF
导出
摘要 针对传统的PTZ摄像机跟踪运动目标时依靠人工操作,无法连续、实时动态跟踪,甚至导致跟踪失败的缺点,提出以HSV颜色直方图作为模型特征,通过Camshift算法和卡尔曼滤波器实现运动目标的定位和预测补偿,运用闭环控制机制自动调节云台的转动和镜头的变倍,提高了系统的实时性。通过Android智能手机手动调节云台和镜头,配合自动跟踪系统,使跟踪效果更准确。结果表明:该方法是可行的,具有控制简单、定位准确的优点,能提高目标跟踪的实时性和可靠性。 According to the defects of tracking moving object by PTZ camera, such as relying on manual operation, unrealtime and uncontinuous tracking, almost leading to the failture of tracking, a new intelligent control system was designed by using HSV color histogram as model feature. Then and Kalman filter model was adopted to estimate the was used to controll PTZ camera platform movement Camshift algorithm was adopted to realize object tracking location moving object location of the next time. Finally closed loop idea and lens antomatic zoom. The new system improves the real-time performance. Cooperating with the intelligent control system, the effect of tracking is more accurate by controlling the PTZ camera with Android smart phone. The results show that the method is feasible, has the advantages of simple control and remaining correct location,and it also can improve real-time performance and reliability of object tracking.
出处 《计算机科学》 CSCD 北大核心 2015年第B11期135-139,共5页 Computer Science
关键词 PTZ摄像机 颜色直方图 CAMSHIFT 卡尔曼滤波器 ANDROID PTZ camera, Color histogram, Camshift, Kalman filtering, Android
  • 相关文献

参考文献9

二级参考文献56

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2Wixson L. Detecting salient motion by accumulating directionally- consistent flow[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 774-780.
  • 3Bakowski A, Jones G A. Video surveillance tracking using colour region adjacency graphs[J], IEE Conference Publication, 1999, 2(465): 794-798.
  • 4Fashing M, Tomasi C. Mean shift is a bound optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 471 -474.
  • 5Cheng Y Z. Mean shift, mode seeking, and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799.
  • 6Bradski G R. Computer vision face tracking for use in a perceptual user interface[J]. Intel Technology Journal, 1998, 2(2): 1-15.
  • 7Shan C F, Wei Y C, Tan T N, et al. Real time hand tracking by combining particle filtering and mean shift[A]. Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition[C]. Los Alamitos, CA, USA: IEEE Computer Society, 2004. 669-674.
  • 8Comaniciu D, Ramesh V, Meer R Real-time tracking of nonrigid objects using mean shift[A]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. Los Alamitos, CA, USA: IEEE Computer Society, 2000. 142-149.
  • 9Comaniciu D, Meer E Mean shift: A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 10Nouar O D, Ali G, Raphael C. Improved object tracking with Camshift algorithm[A]. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing[C]. Piscataway, NJ, USA: IEEE, 2006. 657-660.

共引文献124

同被引文献74

  • 1张铁中,杨丽,陈兵旗,张宾.农业机器人技术研究进展[J].中国科学:信息科学,2010,40(S1):71-87. 被引量:55
  • 2周军平,郝朝会,杨学军,金鑫,孙星,王锦江.番茄收获机喂入机构运动特性分析与参数优化[J].农业机械学报,2013,44(S2):75-79. 被引量:4
  • 3~[J].~,t~)~, 2015, 4201A): 135-139. Chen S Y, Wang S X. The study of the intelligent control al- gorithm for PTZ camera to track moving targets[J]. Computer Science, 2015, 42(11A): 135-139.
  • 4Wang S, Tian Y, Xu Y P. Automatic control of PTZ camera based on object detection and scene partition[C]//IEEE Interna- tional Conference on Signal Processing, Communications and Computing. Piscataway, USA: IEEE, 2015: 1-6.
  • 5Dong E Z, Yan S X, Tong J G, et al. Design and implementa- tion of a moving object tracking system[C]//IEEE Internation- al Conference on Mechatronics and Automation. Piscataway, USA: IEEE, 2015: 274-279.
  • 6Kristan M, Pflugfelder R, Leonardis A, et al. The visual ob- ject tracking VOT2014 challenge results[M]//Lecture Notes in Computer Science, vol.8926. Berlin, Germany: Springer- Verlag, 2015: 191-217.
  • 7Danelljan M, Khan F S, Felsberg M, et al. Adaptive color at- tributes for real-time visual tracking[C]/flEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2014: 1090-1097.
  • 8Henriques J F, Rui C, Martins P, et al. Exploiting the circu- lant structure of tracking-by-detection with kernels[M]//Lecture Notes in Computer Science, vol.7575. Berlin, Germany: Springer-Verlag, 2012: 702-715.
  • 9Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2014, 37(3): 583-596.
  • 10Bolme D S, Beveridge J R, Draper B, et al. Visual object track- ing using adaptive correlation filters[C]///EEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2010: 2544-2550.

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部