期刊文献+

基于蚁群算法的带截止区均匀量化器的优化及其在ECG数据压缩中的应用 被引量:1

USDZQ Optimization Based on Ant Colony Algorithm and Application in ECG Compression
下载PDF
导出
摘要 结合小波系数的特点,采用了改进的均匀量化器——带截止区的均匀量化器(USDZQ)对变换后的小波系数进行量化。量化器的参数选取直接影响到ECG数据压缩的质量和压缩比,因此重点研究了USDZQ的参数优化问题,选取了蚁群优化算法(ACO)作为USDZQ参数的优化工具。最后,利用本文算法对MIT-BIH心律失常数据库的ECG信号进行了编码测试。实验结果表明,只要对USDZQ的参数进行合理优化,USDZQ就能获得优于均匀量化的性能,并可以成功地应用于ECG数据压缩中。 This paper adopted an improved uniform quantizer, a uniform scalar dead zone quantizer(USDZQ), to quantize the transformed coefficients. The selection of quantizer parameters directly affects the ECG data compression performanee. Therefore the objective of this study was focused on the optimization of the USDZQ parameters. We used the ant colony optimization(ACO) algorithm for the optimization. Experiments on several records from the MIT-BIH arrhythmia database show that as long as the USDZQ parameter is optimized reasonably,USDZQ can achieve better per formance than the uniform quantizer,and may successfully be applied in the ECG data compression.
作者 王伟平 杨苗
出处 《计算机科学》 CSCD 北大核心 2015年第B11期550-553,共4页 Computer Science
基金 云南省教育厅面上项目:基于RFID与GPRS技术的灾难救援系统开发研究(KKJA201025051) 云南省软件工程重点实验室开放基金资助项目面上基金项目:嵌入式系统软件的演化研究(2012SE308) 国家自然科学基金:提高锡 金等金属回收率的摇床分带图像分割法研究(51204077)资助
关键词 蚁群优化算法 带截止区的均匀量化器 ECG压缩 ACO, USDZQ, ECG data compression
  • 相关文献

参考文献18

  • 1Colorm A, Dorigo M, Manieaao V. Distributed optimization by ant colonies[C]//Proc of the First European Conf. on Artificial Life,Paris,France Elsevier Publishing. 1991 : 134-142.
  • 2Colorni A, et al. Ant system for job shop scheduling[J]. JOR- BEL, 1994,34(1 ) : 39-53.
  • 3Costa D, Hertz A. Ant can color graphs[J]. Journal of the Opnl Res Soc, 1997,48(3) : 295-305.
  • 4Bullnheimer B, Hartl R F, Strauss C. An improved ant system algorithm for the vehicle routing problem[J]. Annals of Opera- tions Research, 1999,89 : 319 328.
  • 5Coello C A C,Cutierrez R L Z,Garcia B M,et al. Automatec de- sign of combinational logic circuits using the Ant Systm[J]. En gineering Optimization, 2002,34(2) : 109 127.
  • 6Cordone R,Maffioli F. Coloured ant system and local search to design local telecommunication networks [J]. Applications of Evolutionary Computing, 2001,2037 : 60 69.
  • 7吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245. 被引量:306
  • 8马良,项培军.蚂蚁算法在组合优化中的应用[J].管理科学学报,2001,4(2):32-37. 被引量:160
  • 9刘康,余玲.蚁群算法及其连续优化算法初析[J].四川轻化工学院学报,2004,17(1):42-46. 被引量:2
  • 10Batista L V, Carvalho L C, Melcher E U K. Compression of ECG Signals Based on Optimum Quantization of Discrete Cosine Transform Coefficients and Golomb-rice Codeing[C]//Procee- dings of the 25th Annual International Conference of the 1EEE EMBS Cancun. Mexico September 2003:17 21.

二级参考文献52

  • 1蒋玲艳,张军,钟树鸿.蚁群算法的参数分析[J].计算机工程与应用,2007,43(20):31-36. 被引量:32
  • 2马良.多准则货郎问题及其算法.运筹学的理论与应用[M].西安:西安电子科技大学出版社,1996.187-192.
  • 3DORIGOM,STUTZLET.蚁群优化[M].张军,胡晓敏,罗旭耀,译.北京:清华大学出版社,2007:216-246.
  • 4Marco Dorigo, Alberto Colorni. The Ant System: Optimization by a Colony of Cooperating Agents[J]. IEEE Translation on Systems, Man, and Cybernetics-Part B, (1): 1996,1-13.
  • 5Gambardella L, M,Taillard E D, Dorigo M. Ant Colonies for the Quadratic Assignment Problem[J]. J Oper P.es Soci,1999.50 (2) :167-176.
  • 6Boryczka U, Boryczka M. Generative Policies in Ant Systems for Scheduling[A]. 6th European Congr Intell Tech Soft Comp[C]. Bruxelles, 1998. 1:382-386.
  • 7Marco Dorigo, Alberto Colorni. The Ant System: Optimization by a Colony of Cooperating Agents[J]. IEEE Translation on Systems, Man, and Cybernetics-Part B, (1):1996,1-13.
  • 8Gambardella L, M,Taillard E D, Dorigo M. Ant Colonies for the Quadratic Assignment Problem[J]. J Oper Res Soci,1999,50(2):167-176.
  • 9Boryczka U, Boryczka M. Generative Policies in Ant Systems for Scheduling[A]. 6th European Congr Intell Tech Soft Comp[C]. Bruxelles, 1998. 1:382-386.
  • 10马良,学位论文,1999年

共引文献438

同被引文献35

  • 1KaergaardK, Jensen SH, Puthusserypady S. A comprehensiveperformance analysis of EEMD-BLMS and DWT-NN hybridalgorithms for ECG denoising[J]. Biomed Sign Proc Contr, 2016,25: 178-187.
  • 2YochumM, Renaud C, Jacquir S. Automatic detection of P, QRSand T patterns in 12 leads ECG signal based on CWT[J]. BiomedSign Proc Contr, 2016, 25: 46-52.
  • 3PadhyS, Sharma LN, Dandapat S. Multilead ECG datacompression using SVD in multiresolution domain[J]. Biomed SignProc Contr, 2015, 23: 10-18.
  • 4GrossiG, Lanzarotti R, Lin J. High-rate compression of ECGsignals by an accuracy-driven sparsity model relying on naturalbasis[J]. Digit Sign Proc, 2015, 45: 96-106.
  • 5EdwardJS, Ramu P, Swaminathan R. Imperceptibility - robustnesstradeoff studies for ECG steganography using continuous antcolony optimization[J]. Expert Syst Appl, 2015, 49: 123-135.
  • 6Kumar R, Kumar A, Singh GK. Hybrid method based on singularvalue decomposition and embedded zero tree wavelet technique forECG signal compression.[J]. Comput Meth Prog Biomed, 2016.
  • 7TawficI, Kayhan S. Compressed sensing of ECG signal forwireless system with new fast iterative method[J]. Comput MethProg Biomed, 2015, 122(3): 437-449.
  • 8SharmaL N. Coding ECG beats using multiscale compressedsensing based processing[J]. Comput Electr Eng, 2015, 45(C): 211-221.
  • 9Liu T, Si Y, Wen D, et al. Dictionary learning for VQ featureextraction in ECG beats classification[J]. Expert Syst Appl, 2016,53: 129-137.
  • 10Fatin A, Naomie S, Arief R, et all. Arrhythmia recognition andclassification using combined linear and nonlinear features of ECGsignals[J]. Comput Meth Prog Biomed, 2016, 127: 52-63.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部