期刊文献+

高活性Al-LiBH_4-Bi铝基复合制氢材料 被引量:3

High active Al-LiBH_4-Bi composite for hydrogen generation
下载PDF
导出
摘要 采用机械球磨法制备高活性的铝基复合制氢材料,以Al-5%Li BH4为研究对象,采用Bi部分取代Al制备了Al-5%Li BH4-Bi三元体系。并且讨论了球磨时间、球料比、球磨速度分别对Al-5%Li BH4-3%Bi复合材料的产氢性能的影响。结果表明,球料比为30∶1、球磨速度为500 r/min球磨3.5 h的复合材料的产氢量最高为1 480 m L/g,最大产氢速率较低为975 m L/(g·min)。若降低球料比20∶1、球磨速度400 r/min、球磨时间2 h,可大幅提高材料的最大产氢速率,但会降低材料的氢气产量。采用X射线衍射(XRD)仪和扫描电镜(SEM)对所得铝基复合材料进行物相分析和形貌分析,结果表明,在球磨过程中,Al、Li BH4、Bi三者只是机械混合,没有形成新相。 A high active Al-base composites for fast hydrogen generation in pure water was prepared by ball milling. The Bi additive was added into the AI-5% LiBH4 composite system for preparing Al-5% LiBH4-Bi. The effects of milling time, ball material ratio and milling rate on the performance of hydrogen generation by the reaction of AI-5% LiBH4-3% Bi with pure water were studied. For Al-5% LiBH4-3% Bi (mass fraction) composite, the results show that the material could produce 1 480 mL H2/g with generation hydrogen rate 975 mL/(g·mn), at 25 ℃ at the ball-milling conditions of ball milling 3.5 h, ball matedal ratio 30 : 1 and 500 r/min; at the other ball-milling conditions of ball milling 2 h, ball material ratio 20 : 1 and 400 r/min, the composite has higher hydrogen generation rate and less hydrogen yield. Results of X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) analysis show that Al, LiBH4 and Bi just are mechanically mixed, they do not form a new phase in the ball milling process.
出处 《电源技术》 CAS CSCD 北大核心 2015年第11期2409-2411,2432,共4页 Chinese Journal of Power Sources
基金 国家自然科学基金(21173111 51371060 51361005 21275022) 辽宁省自然科学基金(2014GXNSFDA118005 2014GXNSFAA118319) 广西信息材料重点实验室开放基金(1210908-217-Z)
关键词 铝基复合材料 Al-LiBH4-Bi 机械球磨 制氢 Al-base composite Al-LiBH4-Bi ball milling hydrogen generation
  • 相关文献

参考文献10

  • 1ZITTEL A, RENTSCH S, FISCHER P, et al. Hydrogen storage properties of LiBI-L[J]. J Alloys Compd, 2003, 356(1/2): 515-520.
  • 2ZITTEL A, BORGSCHULTE A, ORIMO S. Tetrahydroborates as new hydrogen storgen materials[J]. Scripta Mater, 2007, 56(10): 823-828.
  • 3AU M, JURGRNSEN A,ZEIGLER K.Modified lithium borohydrides for reversible hydrogen storage [J]. J Phys Chem B, 2006, 110 (13): 7062-7067.
  • 4MOSEGAARD L,MOLLER B, JORGENSEN J E, et al. Intermedi- ate phases observed during decomposition of LiBI-L[J]. Journal of Alloys and Compounds, 2006, 446/447: 301-305.
  • 5LENE M, BITTEN M, JORGENSEN J, et al. Reactivity of LiBH4: in situ synchrotron radiation powder X-ray diffraction study[J]. Journal of Physical Chemistry C, 2008, 112(4): 1299-1303.
  • 6MIWA K, OHBA N, TOWATA S. First-principles study on lithium borohydride LiBH4[J]. Physical Review B, 2004, 69(24): 1681-1685.
  • 7FAN M Q, XU F, SUN L X. Studies on hydrogen generation charac- teristics of hydrolysis of the ball milling Al-based materials in pure water[J]. Int J Hydrogen Energ, 2007, 32(14): 2809-2815.
  • 8FAN M Q, XU F, SUN L X. Hydrogen generation by hydrolysis reaction of ball-milled AI-Bi alloys [J]. Energ Fuel, 2007, 21 (4): 2294-2298.
  • 9FAN M Q, XU F, SUN L X, et al.Hydrolysis of ball milling A1-Bi- hydride and AI-Bi-salt mixture for hydrogen generation [J]. J Alloy Compd, 2008, 460(1/2): 125-129.
  • 10ZHANG Y, ZHANG W S. LiBH4 nanoparticles supported by disor- dered mesoporous carbon: hydrogen storage performances and destabilization mechanisms [J]. Int J Hydrogen Energy, 2007, 32 (16): 3976-3980.

同被引文献10

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部