期刊文献+

基于在线字典学习的管道微弱泄漏检测方法

Method of pipeline weak leak detection based on online dictionary learning
下载PDF
导出
摘要 针对离线字典学习方法存在对管道泄漏检测长时期运行信号的适应性不足、计算量大的缺点,进行了基于在线字典学习的检测方法研究。借鉴参数化字典训练方法的思想,对管道泄漏动态压力信号进行多分辨率分解,对分解的子频带信号进行稀疏编码,并进行快速的在线字典训练与更新,根据稀疏编码结果进行微弱泄漏检测。现场实验数据的测试结果表明,提出的方法可检测出泄漏低频响应为0.2 Hz以上,流量变化量大于0.4%的微弱泄漏,有效提高了微弱泄漏的检出率,降低了虚警率。 The traditional algorithm of offline dictionary learning has the disadvantage of massive computation and lack of adaptability to long term run signal. This paper put forward a new method of oil and gas pipeline weak leak detection based on online dictionary learning. Firstly, it decomposed the signal of pipeline dynamic pressure by multi-resolution wavelet, and sparsely coded each sub-band signals. Secondly, it designed the algorithm of over-complete dictionary training. At last, it performed weak leak detection by sparse coding results. Simulation results show that the proposed method can detect low frequency response of the weak leak greater than 0.2 Hz, flow changes greater than 0.4%, the proposed method can improve the weak leak detection rate and reduce the false alarm rate.
出处 《计算机应用研究》 CSCD 北大核心 2015年第12期3665-3667,共3页 Application Research of Computers
基金 中国石油天然气股份有限公司科技项目(GDGS-KJZX-2013-JS-289)
关键词 在线字典学习 微弱泄漏检测 稀疏编码 多分辨率分解 online dictionary learning weak leak detection sparse coding multi-resolution decomposition
  • 相关文献

参考文献13

二级参考文献45

  • 1李炜,朱芸.长输管线泄漏检测与定位方法分析[J].天然气工业,2005,25(6):105-109. 被引量:55
  • 2徐进永,张子达,陆爽.基于K-L变换和支持向量机的滚动轴承故障模式的识别[J].吉林大学学报(工学版),2005,35(5):500-504. 被引量:7
  • 3林伟国,郑志受.基于动态压力信号的管道泄漏检测技术研究[J].仪器仪表学报,2006,27(8):907-910. 被引量:23
  • 4Wang L, Jin S, Li J, et al. Wavelet packet analysis for leakage pressure signal characteristic extraction [ J ]. Transactions of Tianjin University, 2004, 10(Suppl) : 90-94.
  • 5Chen Shili, Sun Yan, Wang Likun, et al. Development on dynamic pressure monitoring method and sensor for long pipeline leak detection[ C ]//Proceedings of the 7th International Pipeline Conference. Calgary, Canada, 2008 : IPC2008-64010.
  • 6Wolf A, Swift J B, Swinney H L, et al. Determining Lya- punov exponents from a time series[J]. Physica D, 1985,16(2): 285-317.
  • 7Snao M, Sawada Y. Measurement of Lyapunov spectrum from a chaotic time series [ J ]. Physical Review Letters, 1985, 55(10) : 1082-1085.
  • 8Rosenstein M T, Collins J J, De Luca C J. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D, 1993, 65(1/2) : 117-134.
  • 9Kantz H. A robust method to estimate the maximal Lyapunov exponent of a time series[J]. Physics Letters A, 1994, 185 ( 1 ) : 77-87.
  • 10Takens F. Detecting Strange Attractors in Turbulence [ M ]. Berlin: Springer-Verlag, 1981 : 366-381.

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部