期刊文献+

一种新的瞬时谱分析技术在致密砂岩气检测中的应用 被引量:4

A New Method of Instantaneous Spectral Analysis Application to the Tight Sandstone Gas Detection
下载PDF
导出
摘要 瞬时谱分析技术在地震资料处理和解释中扮演着重要的角色,该方法的优劣取决于时频分析的好坏。常规的线性时频分析方法均是基于傅里叶方法发展起来的,因此受测不准原理限制,使之不能同时具有较高的时间和频率分辨率,且针对非线性非平稳信号的处理效果较差。将基于改进的CEEMD算法的HHT方法应用于致密砂岩气地震资料的瞬时谱分析中,分别从一维地震道,二维地震剖面以及三维地震数据体三个方面进行了实际地震资料含气性检测试验。结果表明该方法在一维地震道时频谱上能够区分含气区;在二维地震剖面的瞬时谱剖面上能发现明显的低频阴影现象;在三维瞬时谱数据体切片中能大致划分含气区域的范围。含气检测结果与测井综合解释结果相吻合,因此方法可以在致密砂岩气地震资料的解释性处理中进行推广。 The instantaneous spectral analysis method plays an important role in seismic data processing and interpretation. The merits of this method mainly depend on the quality of the time-frequency analysis method. The conventional linear time-frequency analysis methods are developed based on the Fourier Transform,and restricted by the uncertainty principle which makes it not have higher resolution in time and frequency domain at the same time. The processing results are also bad for nonlinear and non-stationary signal. The HHT method based on the improved CEEMD algorithm was show which was applied to instantaneous spectral analysis in gas seismic data. Gas testing in seismic data respectively from 1D,2D and 3D seismic data was given. In the 1D seismic data,gas area can be distinguish. In the 2D instantaneous spectral profiles,the low-frequency shadow can be easily observed. In the 3D instantaneous spectral slices,the gas areas can be roughly divided. The results are got match well with logging interpretation. Therefore,the method proposed can be widely promoted in seismic data processing.
作者 陈伟
出处 《科学技术与工程》 北大核心 2015年第33期124-131,共8页 Science Technology and Engineering
基金 油气资源与勘探技术教育部重点实验室(长江大学)项目(K2014-11)资助
关键词 CEEMD HHT 瞬时谱 含气检测 CEEMD HHT instantaneous spectrum gas detection
  • 相关文献

参考文献18

  • 1曹向阳,常旭,刘伊克,张春雷.地震奇异性属性及其在油气检测中的应用[J].石油勘探与开发,2010,37(3):325-329. 被引量:4
  • 2林昌荣,王尚旭,马在田,陈双全,方敏华.地震数据体结构特征时空关系与油气预测[J].石油勘探与开发,2009,36(2):208-215. 被引量:9
  • 3蔡瑞.基于谱分解技术的缝洞型碳酸盐岩溶洞识别方法[J].石油勘探与开发,2005,32(2):82-85. 被引量:22
  • 4Liu J, Marfurt K J. Instantaneous spectral attributes to detect chan- nels. Geophysics, 2007; 72(2) : 23-31.
  • 5Odebeatu E, Zhang J, Chapman M, et al. Application of spectral de- composition to detection of dispersion anomalies associated with gas saturation. The Leading Edge, 2006; 25:206-210.
  • 6Morlet J, Arensz G, Fourgeau E. Wave propagation and sampling theory-part II: sampling theory and complex waves. Geophysics, 1982 ; 47 : 222-236.
  • 7Partyka G, Gridley J, Lopez J. Interpretational applications of spec- tral decomposition in reservoir characterization. The Leading Edge, 1999 ; 18 : 353-360.
  • 8Chakraborty A, Okaya D. Frequency-time decomposition of seismic data using wavelet-based methods. Geophysics, 1995 ; 60 : 1906-1916.
  • 9Castagna J, Sun S, Siegfried R. Instantaneous spectral analysis: de- tection of low-frequency shadows associated with hydrocarbons. The Leading Edge, 2003; 22:120-127.
  • 10Rioul O, Vetterli M. Wavelets and signal processing. IEEE Signal Processing Magazine, 1991;8:14-38.

二级参考文献35

共引文献32

同被引文献31

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部