期刊文献+

基于经验模态分解的管道超声回波信号识别 被引量:2

Recognition of pipeline ultrasonic echo signal based on empirical mode decomposition
下载PDF
导出
摘要 在管道超声无损检测中,超声回波信号常受到噪声干扰或者因管道壁缺陷原因导致回波波形重叠,故检测信号很难判断缺陷大小。现采用一种基于经验模态分解(Empirical Model Decomposition,EMD)的方法,对超声回波信号的到达时间进行准确识别。该方法首先把原始采集的超声回波信号进行经验模态分解,预处理回波信号中的噪声干扰,处理后的信号通过正交检波处理得到该信号的峰值包络,则该包络的峰值时刻对应了回波信号的到达时刻。通过对实测缺陷信号的试验,验证了该方法的可行性和准确性。 Pipeline ultrasonic NDT echo signals are difficult to determine the sizes of defects because of low SNR or pipeline wall flaw with causing echo overlapped. A technique based on empirical model decomposition (EMD) was proposed to improve the arrival time identification of ultrasonic echo. A signal is decomposed by EMD for pretreating the noise in the echo, and then is changed into the envelope by quadrature detection transform which the arrival times of echoes corresponds to the peaks of the envelope of reconstructed signal. Meanwhile, the effectiveness of this technique was testified by the experimental results with the real ultrasonic data.
出处 《信息技术》 2015年第11期37-40,共4页 Information Technology
基金 国家自然科学基金资助项目(51375217)
关键词 经验模态分解 正交检波变换 超声波 信号去噪 empirical mode decomposition (EMD) quadrature detection transform ultrasonic wave signal de-noising
  • 相关文献

参考文献7

二级参考文献18

  • 1王军伟,阙沛文.分离谱法在超声信号处理中的应用[J].计算机测量与控制,2004,12(7):670-671. 被引量:4
  • 2杨克己.基于神经网络的自适应滤波技术及其在超声检测中的应用[J].仪器仪表学报,2005,26(8):813-817. 被引量:19
  • 3陈岳军,史耀武.小波变换模极大值在粗晶材料超声检测中的应用[J].无损检测,1997,19(2):32-34. 被引量:11
  • 4史亦伟 梁箐.超声检测材料中微小缺陷的当量关系研究[A]..第七届全国无损检测年会论文集[C].,1999.243-246.
  • 5Honarvar F,Sherkhzadeh H, Moles M. Improving the time resolution and signal to noise ratio of ultrasonic NDE signals[J]. Ultrasonics ,2004,41: 755-763.
  • 6Huang N E, Shen Zheng ,Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc. R. Soc. Lond(A) ,1998,454(1) : 903-955.
  • 7Loutridis S J. Damage detection in gear systems using empirical mode decomposition [J]. Engineering Structures, 2004,26(12) : 1833-1841.
  • 8Bennett, Michael. Empirical mode decomposition and tissue harmonic imaging[J]. Ultrasound in Medicine & Biololgy, 2005,31(8):1051-1061.
  • 9Mallat S.. Multiresolution approximation and wavelet orthornormal bases of L^2 [J] . Trans Amer Math Soc, 1989, 315(1): 69-87.
  • 10Mallat S., Zhong S.. Characterization of signals from multiscale edges[J]. IEEE Trans PAMI, 1992, 14(7): 710 -717.

共引文献49

同被引文献7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部