期刊文献+

一种新型的图像边缘检测技术 被引量:3

A new technology of image edge detection
下载PDF
导出
摘要 针对传统的数学形态学边缘检测算法,提出一种新型的基于数学形态学的膨胀,腐蚀,开,闭等变换,采用不同方向不同尺度结构元素对图像进行边缘检测,大尺度结构元素清除噪声,小尺度结构元素获取完整的边缘。通过计算获取边缘的信息熵,自动匹配权值系数,进而得到最终图像边缘的完整信息。此方法能够有效地抑制噪声,保持边缘信息的完整性,精确性。 In view of the traditional mathematical morphology edge detection algorithms, this paper puts forward a new kind of mathematical morphology based on expansion, corrosion, opening operation and closing operation, such as the multidirectional multi-scale structure element is adopted to detect image edge, large scale structure unit is to remove noise and the small scale structure unit is to get completive edge. By calculating information entropy of the edge, the weight coefficient is adaptively determined, then achieving the final complete information of the image edge. The experiment proved that this method can suppress noise effectively and keep the integrity and accuracy of the image edge.
出处 《信息技术》 2015年第11期152-154,共3页 Information Technology
关键词 边缘检测 迭代阈值 权值自匹配 多尺度结构元 edge detection iterative threshold adaptive weight multi-scale structural units
  • 相关文献

参考文献10

二级参考文献58

共引文献366

同被引文献22

  • 1李丽,刘小丹.基于快速熵阈值的彩色图像边缘自动检测方法研究[J].承德民族师专学报,2005,25(2):21-23. 被引量:1
  • 2段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术,2005,31(3):415-419. 被引量:373
  • 3张红英,彭启琮.全变分自适应图像去噪模型[J].光电工程,2006,33(3):50-53. 被引量:45
  • 4魏伟波,芮筱亭.图像边缘检测方法研究[J].计算机工程与应用,2006,42(30):88-91. 被引量:115
  • 5CHEN,Q. ,MONTESINOS,P. ,SUN,Q.S.et al.Adaptive total variation denoising based on difference curvature[J]. Image and Vision Computing, 2010,28(3) 298-306.
  • 6WITKIN A..Scale space filtering[C].In Proceed ing of 8th International Joint Conference of Artificial Intelligence, Vol. 2 1019-1022.
  • 7PERONA,P.,MALIK,J.Scale-space and edge detection using anisotropic diffusion[J].PatternnAnalysis and Machine Intelligence,IEEE Transactions on, 1990, 12(7): 629-639.
  • 8CATT ,F.,LIONS,P.-L. ,MOREL,J.-M. et al. Image selective smoothing and edge detection by nonlinear diffusion[J].SIAM Journal on Numerical Analysis, 1992,29(1). 182-193.
  • 9RUDIN, L. I., OSHER, S., FATEMI, E. Nonlinear total variation based noise removal algorithms[D]. Nonlinear Phenomena, 1992,60(1): 259-268.
  • 10SONG,B.Topics in variational PDE image segmentation in painting and denoising[D].University of California Los Angeles,2003.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部