摘要
设m是正偶数.证明了(A)若b是奇素数,且a=m|m^6-21m^4+35m^2-7|,b=|7m^6-35m^4+21m^2-1|,c=m^2+1,则Diophantine方程G:a^x+b^y=c^z仅有正整数解(x,y,z)=(2,2,7);(B)若m>2863,且a=m|m^8-36m^6+126m^4-84m^2+9|,b=|9m^8-84m^6+126m^4-36m^2+1|,c=m^2+1,则Diophantine方程G仅有正整数解(x,y,z)=(2,2,9);(C)若a,b,c适合a=m|∑_(i=0)^((r-1)/2)(-1)~i(_(2i)~r)m^(r-2i-1)|,b=|∑_(i=0)^((r-1)/2)(-1)~i(_(2i+1)~r)m^(r-2i-1)|,c=m^2+1,r≡1(mod4),2|x,2|y,且b为奇素数或m>145r(log r),则方程G仅有解(x,y,z)=(2,2,r).
Let m be an even positive integer. In this paper, we prove that (A) if b is an odd prime and a = m |m^6- 21m^4 + 35m^2- 7|, b = |7m^6- 35m^4 + 21m^2-1|, c = m^2+1, then the Diophantine equation G: a^x + b^y = c^z has only one positive integer solution (x, y, z)=(2, 2, 7); (B) ifm 〉 2863, and a = m|m^8-36m^6+126m^4-84m^2+9|, b = |9m^8-84m^6+126m^4-36m^2+ 1|, c = m^2 + 1, then the Diophantine equation G has only one positive integer solution (x, y, z) =(2,2,9); (C) if a,b,c satisfy a=m|∑r-1/2 i=0(-1)^i(2i^r)m^r-2i-1|,b=|∑r-1/2 i=0(-1)^i(2i+1^r)m^r-2i-1|,c=m^2+1,r≡1(mod4),2|x,2|y, and b is an odd prime or m 〉 145r(logr), then the Diophantine equation G has only one positive integer solution (x, y, z) = (2, 2, r).
出处
《数学进展》
CSCD
北大核心
2015年第6期837-844,共8页
Advances in Mathematics(China)
基金
江苏省教育科学"十二五"规划课题基金项目(No.D201301083)
泰州学院重点课题基金项目(No.TZXY2014ZDKT007)
云南省教育厅科研课题基金项目(No.2014Y462)
喀什师范学院校内科研课题基金项目(No.(14)2513)