期刊文献+

关于Diophantine方程a^x+b^y=c^z的Terai猜想 被引量:3

On Terai's Conjecture Concerning the Diophantine Equation a^x+b^y=c^z
原文传递
导出
摘要 设m是正偶数.证明了(A)若b是奇素数,且a=m|m^6-21m^4+35m^2-7|,b=|7m^6-35m^4+21m^2-1|,c=m^2+1,则Diophantine方程G:a^x+b^y=c^z仅有正整数解(x,y,z)=(2,2,7);(B)若m>2863,且a=m|m^8-36m^6+126m^4-84m^2+9|,b=|9m^8-84m^6+126m^4-36m^2+1|,c=m^2+1,则Diophantine方程G仅有正整数解(x,y,z)=(2,2,9);(C)若a,b,c适合a=m|∑_(i=0)^((r-1)/2)(-1)~i(_(2i)~r)m^(r-2i-1)|,b=|∑_(i=0)^((r-1)/2)(-1)~i(_(2i+1)~r)m^(r-2i-1)|,c=m^2+1,r≡1(mod4),2|x,2|y,且b为奇素数或m>145r(log r),则方程G仅有解(x,y,z)=(2,2,r). Let m be an even positive integer. In this paper, we prove that (A) if b is an odd prime and a = m |m^6- 21m^4 + 35m^2- 7|, b = |7m^6- 35m^4 + 21m^2-1|, c = m^2+1, then the Diophantine equation G: a^x + b^y = c^z has only one positive integer solution (x, y, z)=(2, 2, 7); (B) ifm 〉 2863, and a = m|m^8-36m^6+126m^4-84m^2+9|, b = |9m^8-84m^6+126m^4-36m^2+ 1|, c = m^2 + 1, then the Diophantine equation G has only one positive integer solution (x, y, z) =(2,2,9); (C) if a,b,c satisfy a=m|∑r-1/2 i=0(-1)^i(2i^r)m^r-2i-1|,b=|∑r-1/2 i=0(-1)^i(2i+1^r)m^r-2i-1|,c=m^2+1,r≡1(mod4),2|x,2|y, and b is an odd prime or m 〉 145r(logr), then the Diophantine equation G has only one positive integer solution (x, y, z) = (2, 2, r).
作者 管训贵
机构地区 泰州学院
出处 《数学进展》 CSCD 北大核心 2015年第6期837-844,共8页 Advances in Mathematics(China)
基金 江苏省教育科学"十二五"规划课题基金项目(No.D201301083) 泰州学院重点课题基金项目(No.TZXY2014ZDKT007) 云南省教育厅科研课题基金项目(No.2014Y462) 喀什师范学院校内科研课题基金项目(No.(14)2513)
关键词 指数DIOPHANTINE方程 TERAI猜想 正整数解 exponential Diophantine equation Terai's conjecture positive integer solution
  • 相关文献

参考文献9

  • 1Bilu, Y., Hanrot, G. and Voutier, P.M. (with an appendix by Mignotte, M.), Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 2001, 539: 75-122.
  • 2Dong, X.L. and Cao, Z.F., On Terai-Jegmanowicz conjecture concerning the equation as q- by : cz, Chinese Math. Ann. Ser. A, 2000, 21(6): 709-714.
  • 3Hu, Y.Z., Yuan, P.Z., On the exponential diophantine equation ax q- by : cz, Acta Math. Sin., Chin. Ser., 2005, 48(6): 1175-1178 (in Chinese).
  • 4Laurent, M., Mignotte, M. and Nesterenko, Y., Formes linaires en deux log arithmes et d@termin ants d'interpolation, J. Number Theory, 1995, 55:285-321 (in French).
  • 5Le, M.H., On the Terai's conjecture concerning the exponential Diophantine equation ax + by = cz, Acta Math. Sin., Chin. Ser., 2003, 46(2): 245-250 (in Chinese).
  • 6Mordell, L.J., Diophantine Equation, London: Academic Press, 1969.
  • 7Terai, N., The Diophantine equation as bY = cz, Proc. Japan Acad. Set. A Math. Sci., 1994, 70: 22-26.
  • 8Terai, N., The Diophantine equation ax -k by = cz, II, Proc. Japan Aead. Ser. A Math. Sci., 1995, 71: 109-110.
  • 9Voutier, P.M., Primitive divisors of Lucas and Lehmer sequences, Math. Comp., 1995, 64: 869-888.

同被引文献10

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部