摘要
设E_3/Q是一个非正则的三次扩域,a_k表示在域E_3上范数为k的整理想的个数R_x表示和式∑_(k≤x)a_k^2的渐近式的余项.本文证明了对任给的ε>0,∫_1~XR^2(x)dx■_εX^((65)/(27)+ε).
Let E3/Q be a non-normal cubic extension field, and let ak be the number of integral ideals in E3 with norm k. Denote R(x) by the remainder term in the asymptotic formula for the average behavior ∑k≤x ak^2. In this paper, it is shown that
∫1^X R^2(x)dx〈〈ε X^65/27+ε.
出处
《数学进展》
CSCD
北大核心
2015年第6期845-851,共7页
Advances in Mathematics(China)
基金
Supported by NSFC(No.11201107,No.11071186)
the Natural Science Foundation of Anhui Province(No.1208085QA01)
关键词
戴德金ζ函数
数域
均值
Dedekind zeta-function
number fields
mean value