期刊文献+

关于非正则三次域的戴德金ζ函数的均值的余项问题(英文)

On the Error Term for the Mean Value Associated With Dedekind Zeta-function of a Non-normal Cubic Field
原文传递
导出
摘要 设E_3/Q是一个非正则的三次扩域,a_k表示在域E_3上范数为k的整理想的个数R_x表示和式∑_(k≤x)a_k^2的渐近式的余项.本文证明了对任给的ε>0,∫_1~XR^2(x)dx■_εX^((65)/(27)+ε). Let E3/Q be a non-normal cubic extension field, and let ak be the number of integral ideals in E3 with norm k. Denote R(x) by the remainder term in the asymptotic formula for the average behavior ∑k≤x ak^2. In this paper, it is shown that ∫1^X R^2(x)dx〈〈ε X^65/27+ε.
作者 史三英
出处 《数学进展》 CSCD 北大核心 2015年第6期845-851,共7页 Advances in Mathematics(China)
基金 Supported by NSFC(No.11201107,No.11071186) the Natural Science Foundation of Anhui Province(No.1208085QA01)
关键词 戴德金ζ函数 数域 均值 Dedekind zeta-function number fields mean value
  • 相关文献

参考文献13

  • 1Fomenko, O.M., Mean values connected with the Dedekind zeta function, J. Math. Sci. (N. Y.), 2008 150(3): 2115-2122.
  • 2Gelbart, S. and Jacquet, H., A relation between automorphic representations of GL(2) and GL(3), Ann. Sci Ecole NoTnn. Sup., 1978, 1114): 471-542.
  • 3Good, A., The square mean of Dirichlet series associated with cusp forms, Mathematika, 1982 29(2): 278-295.
  • 4Heath-Brown, D.R., The twelfth power moment of the Riemann-function, Q. J. Math., 1978, 29(4): 443-462.
  • 5Huxley, M.N. and Watt, N., The number of ideals in a quadratic field II, Israel J. Math. Part A, 2000, 120 125-153.
  • 6Ivi5, A., Exponent pairs and the zeta function of Riemann, Studia Sci. Math. Hungar., 1980, 15(1/2/3) 157-181.
  • 7Iwaniec, H. and Kowalski, E., Analytic number theory, Amer. Math. Soc. Colloq. Publ., Vol. 53, Providence RI: AMS, 2004, 204-216.
  • 8Jutila, M., Lectures on A Method in the Theory of Exponential Sums, Tara Inst. Fund. Res. Stud. Math. Berlin: Springer-Verlag, 1987.
  • 9Landau, E., Einfiihrung in die elementare and analytische Theorie der algebraischen Zahlen und der Ideale Berlin: Teubner, 1927 (in German).
  • 10Lii, G.S., Mean values connected with the Dedekind zeta-function of a non-normal cubic field, Cent. Eur J. Math., 2013, 11(2): 274-282.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部