期刊文献+

图经广义并接运算后的(无符号拉普拉斯)特征值的一些结论(英文)

Some Results on the(Signless Laplacian)Eigenvalues of Graphs Obtained by a Generalization of the Join Graph Operation
原文传递
导出
摘要 设G是一个顶点集为{u_1,u_2,…,u_n}的点标号图,H_1,H_2,…,H_n是n个顶点不交的图,将图G中的顶点u_i(i=1,2,…,n)用图H_i代替,若点u_i与点u_j在G中相邻,则连接H_i与H_j中的所有的点,这样得到的图定义为G[H_1,H_2,…,H_n].本文确定了图G[H_1,H_2,…,H_n]的Q-特征多项式和A-特征多项式.最后,作为应用,构造了很多对(无符号拉普拉斯)-同谱图,并给出了一些关于特殊图类的Q-特征值和A-特征值的不等式序列. If G is labeled and has n vertices u1,u2,…,un, then the graph G[H1,H2,…,Hn] is formed by taking the disjoint graphs H1,H2,…,Hn and then joining every vertex of Hi to every vertex of Hj when ui is adjacent to uj in G. In this paper, we determine the Q-polynomial and A-polynomial of the graph G[H1,H2,…,Hn]. Finally, as an application of these results, we construct many pairs of nonisomorphic (signless Laplacian) cospectral graphs and give some interesting inequality sequences on Q-eigenvalues and A-eigenvalues of particular graphs.
出处 《数学进展》 CSCD 北大核心 2015年第6期871-881,共11页 Advances in Mathematics(China)
基金 Supported by NSFC(No.11101284,No.11201303,No.11126095) the Hujiang Foundation of China(No.B14005) the Natural Science Foundation of Shanghai(No.12ZR1420300)
关键词 无符号拉普拉斯特征值 主特征值 均匀划分 signless Laplacian eigenvalue main eigenvalue equitable partition
  • 相关文献

参考文献10

  • 1Balifiska, K.T., Cvetkovi, D., Radosavljevi, C., Simid, S. and Stevanovid, D., A survey on integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Set. Mat., 2002, 13: 42-65.
  • 2Cardoso, D.M., De Freitas, M.A.A., Martins, E.A. and Robbiano, M., Spectra of graphs obtained by a generalization of the join graph operation, Discrete Math., 2013, 313(5): 733-741.
  • 3Cvetkovid, D., Rowlinson, P. and Simid, S., An Introduction to the Theory of Graph Spectra, First Edition, Cambridge: Cambridge Univ. Press, 2010.
  • 4De Freitas, M.A.A., De Abreu, N.M.M., Del-Vecchiob, R.R. and Jurkiewicza, S. Infinite families of Q-integral graphs, Linear Algebra Appl., 2010, 432(9): 2352-2360.
  • 5Gopalapillai, I., The spectrum of neighborhood corona of graphs, Kragujevac J. Math., 2011, 35(3): 493-50{).
  • 6Hou, Y.P. and Shiu, W.C., The spectrum of edge corona of two graphs, Electron. J. Linear Algebra, 2010, 20: 586-594.
  • 7Liu, X.G. and Lu, P.L., Spectra of subdivision-vertex and subdivision-edge neighbourhood coronae, Linear Algebra Appl., 2013, 438(8): 3547-3559.
  • 8Schwenk, A.J., Computing the characteristic polynomial of a graph, In: Graphs and Combinatorics (Bary, R. and Harary, F. eds.), Lecture Notes in Math., Vol. 406, Berlin: Springer-Verlag, 1974, 153-172.
  • 9Wang, J.F. and Belardob, F., A note on the signless Laplacian eigenvalues of graphs, Linear Algebra Appl., 2011, 435(10): 2585-2590.
  • 10Wang, S.L. and Zhou, B., The signless Laplacian spectra of the corona and edge corona of two graphs, Linear Multilinear Algebra, 2013, 61(2): 197-204.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部