期刊文献+

一般线性粘弹性阻尼器耗能结构瞬态响应的非正交振型叠加精确解 被引量:21

EXACT NON-ORTHOGONAL MODAL SUPERPOSITION SOLUTIONS OF TRANSIENT RESPONSE OF MDOF DISSIPATION STRUCTURES WITH GENERAL LINEAR VISCOELASTIC DAMPERS
原文传递
导出
摘要 对一般线性粘弹性阻尼器(含线性橡胶隔震支座)耗能结构的非正交振型叠加精确解法进行了系统研究。首先采用最一般的线性粘弹性阻尼器的积分型精确分析模型,用微分积分方程组实现一般粘弹性阻尼器耗能结构的时域非扩阶精确建模;然后采用传递矩阵法,直接在耗能结构原始空间上获得了一般线性粘弹性耗能变频结构在任意激励和非零初始条件下位移与速度时域瞬态响应的非正交振型叠加精确解;通过与3种典型结构的对比分析,验证了该精确解的正确性、简易性和普适性。该非扩阶精确解具有明确的物理意义,可视为现有比例粘滞阻尼定常结构的经典正交振型叠加精确解在一般线性粘弹性阻尼耗能变频结构的推广,能从本质上精确揭示耗能结构的振动机理,即尽管耗能结构的振型不具有正交性,但耗能结构响应仍然可精确分解为各振型响应的线性组合。此振动机理将为建立耗能结构精确的振型分解反应谱法提供分析路径,同时可将现有用于一般粘滞阻尼定常结构的参数识别、动力修改、最优控制及优化设计等方法推广到一般粘弹性阻尼变频非定常结构。 The exact non-orthogonal modal superposition solutions of transient response of MDOF dissipation structures with general linear viscoelastic dampers including elastomeric isolators are studied systematically. By using the general integral models of viscoelastic dampers, which are the most general exact models of linear viscoelastic dampers, the exact dynamic integral-differential response equations in original structural space for MDOF dissipation structures with general linear viscoelastic dampers are established. Then, by using transfer matrix method, the exact non-orthogonal modal superposition solutions in original structural space for displacement and velocity transient response of MDOF dissipation structures with general linear viscoelastic dampers due to arbitrary exterior forcing loadings and initial conditions are obtained. It is verified that these exact solutions are correct, general, simple, direct, and provide better physical insights through solutions in comparison with three kinds of more general typical dissipation structures. These exact solutions in original structural space are similar to the classical modal superposition results for proportionally damped structures usually obtained using the mode-orthogonality relationships, and can exactly discover the vibration characteristics of viscoelastic dissipation structures, namely: though the dissipation structural modes are not orthogonal, the dynamic equations can not be decoupled by using structural modes, the structural transient response can be exactly expressed in terms of a superposition of individual modal response. Therefore, by using above characteristics, it may be possible to extend the existing modal superposition response spectrum method, structural identification, model updating, optimization, and control algorithms available for viscously damped structures to general viscoelastically damped structures.
出处 《工程力学》 EI CSCD 北大核心 2015年第11期140-149,共10页 Engineering Mechanics
基金 国家自然科学基金项目(51468005 51368008) 广西自然科学基金项目(2014GXNSFAA118315) 广西科技大学创新团队支持计划项目
关键词 一般积分型粘弹性阻尼器 多自由度耗能结构 瞬态响应 振型叠加 精确解 general integral model viscoelastic dampers MDOF dissipation structures transient response modal superposition exact solutions
  • 相关文献

参考文献21

  • 1GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
  • 2Soong T T, Dargush G F. Passive energy dissipation systems in structural engineering [M]. England: John Wiley and Ltd, 1997: 128-- 143.
  • 3Christopoulos C, Filiatrult A. Principle of passive supplemental damping and seismic isolation [M]. Pavia, Italy: IUSS Press, 2006: 170--190.
  • 4Koh C G, Kelly J M. Application of fractional derivatives to seismic analysis of base-isolated models [J]. Earthquake Engineering and Structural Dynamics, 1990, 19: 229--241.
  • 5Hwang J S, Ku S W. Analytical modeling of high damping rubber bearings [J]. Journal of Structural Engineering, 1997, 123(8): 1029--1036.
  • 6Johnson C D. Kienhola D A. Finite element prediction of damping in structures with constained viscoelastic layers [J]. AIAA Journal, 1982, 20(9): 1284--1290.
  • 7Ou J P, Long X, Li Q S. Seismic response analysis of structures with velocity-dependent dampers [J]. Journal &Constructional Steel Research, 2007, 63: 628--638.
  • 8Park S W. Analytical modeling of viscoelastic dampers for structural and vibration control [J]. International Journal of Solids and Structures, 2001, 38:8065 -- 8092.
  • 9Singh M P, Chang T S. Seismic analysis of structures with viscoelatic dampers [J]. Journal of Engineering Mechanics, 2009, 135(6): 571--580.
  • 10Zhang J, Zhang G T. The Biot model and its application in viscoelastic composite structures [J]. Journal of Vibration and Acoustics, 2007, 129: 533-- 540.

二级参考文献53

共引文献185

同被引文献129

引证文献21

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部