期刊文献+

基于自适应系统辨识的收发隔离技术研究 被引量:5

A Study on Transmitter-receiver Isolation Based on Adaptive System Identification
下载PDF
导出
摘要 收发隔离是机载干扰机不可避免的难题。如果收发隔离问题解决不好,轻则削弱干扰机效率,重则造成自发自收,形成自激励。固定步长的归一化最小均方误差(NLMS)算法在解决基于自适应系统辨识的收发隔离的问题时,由于精度不够,隔离效果很不理想。针对此问题提出一种基于先验误差的变步长NLMS算法,该算法依据相邻时刻先验误差的相关系数改变步长因子,改变后的步长因子能够在算法收敛过程中削弱噪声的影响,提高算法精度。理论分析和仿真结果证明:基于文中的变步长NLMS算法的收发隔离方案与基于其他最小均方误差算法的隔离方案相比,隔离性能有较大的改善。 Transmitter-receiver isolation is a inevitable problem for airborne jammer. Lower efficiency of jammer and even self-exci- tation might be caused by lower degree of transmitter-receiver isolation. Transmitter-receiver isolation is not satisfactory when the fixed step size normalized least mean square ( NLMS } algorithm is implemented because of worse estimation accuracy. To solve this problem, a variable step-size NLMS algorithm based on prior estimation error is proposed in this paper. The correlation coefficient of the adjacent moment prior estimation error is employed in this NLMS algorithm to control the step size adaptively. The estimation accuracy as well as the isolation performance is improved by weakening the impact of syetem noise in this step size update scheme. The theory analysis and simulation results demonstrate that the performance of transmitter-receiver scheme based on the proposed variable step-size NLMS algorithm is better than schemes which are based on other least mean square algorithms.
出处 《现代雷达》 CSCD 北大核心 2015年第11期16-21,共6页 Modern Radar
关键词 收发隔离 自适应系统辨识 先验误差 归一化最小均方算法 transmitter-receiver isolation adaptive system identification prior estimation error normalized least mean square algorithm
  • 相关文献

参考文献10

  • 1刘国岁,孙光民,顾红,朱晓华.连续波雷达及其信号处理技术[J].现代雷达,1995,17(6):20-36. 被引量:30
  • 2谢曼睿.有源干扰的收发隔离技术研究[D].西安:西安电子科技大学,2012.
  • 3桑乃建,汪学刚,崔明雷.一种基于分数延时滤波器的自适应对消技术的研究[J].雷达与对抗,2011,31(4):29-33. 被引量:6
  • 4张凯,王建业,冯增辉.基于自适应系统辨识的收发隔离技术研究[J].现代防御技术,2010,38(1):77-80. 被引量:8
  • 5KaySM.统计信号处理基础[M].罗鹏飞,译.北京:电子工业出版社,2012.
  • 6Huang H C,Lee J H. A new variable step-size NLMS algo- rithm and its performance analysis [ J ]. IEEE Transactions on Signal Processing,2012,60(4) :2055-2056.
  • 7Benesty J, Rey H. A nonparametric VSS NLMS algorithm [ J ]. IEEE Transactions on Signal Processing, 2006, 13 (10) :581-584.
  • 8Paleologu C, Benesty J. A family of variable step-size NLMS algorithms for echo cancellation [ J ] . IEEE Transactions on Signal Processing,2010,55( 1 ) :49-58.
  • 9Iqbal M A, Grant S L. Novel variable step size NLMS algo- rithm for echo cancellation [ C 1// IEEE International Con- ference on Acoustics, Speech, and Signal Processing. Las Vegas, NV : IEEE Press ,2008 : 241-244.
  • 10Udrea R M, Paleologu C. Estimation of the noise power in the NPVSS-NLMS algorithm [ J ]. IEEE Transactions on Signal Processing,2010,50(2) :385-388.

二级参考文献9

  • 1OPPENHEIM A,VEINSTEIN E, ZANGI K. Single Sensor Active Noise Cancellation [ J]. IEEE Transactions on Speech and Audio Processing, 1994, 1 (4) :285 - 290.
  • 2MANOLAKIS G D, INGLE V K, KOGON S M. Statistical and Adaptive Signal Processing [ M ]. Beijing: Tsinghua University Press, 2003.
  • 3Paulo S Rdiniz.自适应滤波算法与实现[M].刘郁林,景晓兵,谭刚兵,等,译.2版.北京:北京电子工业出版社,2004.
  • 4HAYKIN S, Adaptive Filter Theory [ M ]. N J: Prentice Hall, 2002.
  • 5WIDROW B,STREARNS S D. Adaptive Signal Processing [ M ]. N J: Prentice Hall, Englewood Cliffs, 1985.
  • 6B. Wisrow. Adaptive Noise Cancelling: Principles and Applications [ J ]. IEEE Transactions on Signal Processing, 1975.
  • 7刘国岁,顾红.随机雷达信号的平均模糊函数[J].电子学报,1991,19(5):35-40. 被引量:11
  • 8高鹰,谢胜利.一种变步长LMS自适应滤波算法及分析[J].电子学报,2001,29(8):1094-1097. 被引量:402
  • 9冯存前,张永顺.提高收发隔离度的自适应对消技术研究[J].现代雷达,2004,26(2):61-63. 被引量:14

共引文献38

同被引文献32

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部